تحلیل خشکسالی‏ های شمال شرق ایران با استفاده از شاخص کمبود توأم (JDI)

نوع مقاله : پژوهشی

نویسندگان

1 استادیار گروه مهندسی آب، دانشکدۀ کشاورزی، دانشگاه شهرکرد*

2 دانشجوی دکتری مهندسی منابع آب، دانشکدۀ مهندسی علوم آب، دانشگاه شهید چمران اهواز

3 کارشناس ارشد هیدروژئولوژی، شرکت آب منطقه ‏ای استان آذربایجان غربی

4 دانشجوی دکتری مهندسی منابع آب، دانشکدۀ کشاورزی، دانشگاه بیرجند

چکیده

پایش و پیش‏بینی خشکسالی‏ها، به‌ویژه تعیین دقیق زمان شروع و تداوم آن، اهمیت ویژه‏ای در مدیریت منابع آبی و برنامه‏ریزی برای کاهش تأثیرات مخرب خشکسالی دارد. در این مطالعه خشکسالی‏های منطقۀ شمال شرق ایران با استفاده از شاخص کمبود توأم (JDI) ارزیابی شد. داده‏های بارش ماهانۀ شش ایستگاه سینوپتیک تربت حیدریه، سبزوار، سمنان، شاهرود، گرگان و مشهد، در دورۀ آماری 1971‌ـ 2011، برای محاسبۀ شاخص JDI ‌استفاده شد. نتایج به‌دست‌آمده نشان داد در سال‏های اخیر تعداد ماه‏های خشک در منطقۀ مطالعه‌شده (به‌ویژه در مناطق مرطوب) به‌شدت افزایش یافته است، به‌طوری که در همۀ ایستگاه‏ها (به‌جز سمنان) درصد ماه‏های خشک به بیش از 50 درصد در 10 سال اخیر (2002‌ـ 2011) رسیده است. همچنین نتایج نشان داد شاخص JDI علاوه بر توصیف علمی وضعیت کلی خشکسالی، قابلیت مشخص‌کردن زمان شروع خشکسالی‏ها و نیز خشکسالی‏های طولانی‌مدت را دارد و امکان ارزیابی وضعیت خشکسالی را به‌صورت ماه به ماه فراهم می‏سازد.
 



 
 

کلیدواژه‌ها

موضوعات


منابع
[1]. Mishra AK, and Singh VP. A review of drought concepts. Journal of Hydrology. 2010; 391: 202–216.
[2]. National Climatic Data Center. US National Percent Area Severely to Extremely Dry and severely to Extremely Wet. 2002.
[3]. Agrawala S, Barlow M, Cullen H, and Lyon B. The Drought and Humanitarian Crisis in Central and Southwest Asia: A Climate Perspective, IRI Special Report N. 01-11. International Research Institute for Climate Prediction, Palisades, 2001; p. 24.
[4]. Kao SC, and Govindaraju RS. Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Research. 2008; 44(2): 102-115.
[5]. Sklar A. Distribution functions of n Dimensions and Margins, Publications of the Institute of Statistics of the University of Paris. 1959; 8: 229-231.
[6]. De Michele C, and Salvadori G. A Generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas. Journal of Geophysical Research. 2003; 108(D2): 4067.
[7]. Shiau JT. Fitting drought duration and severity with two-dimensional copulas. Water Resources Management. 2006; 20: 795–815.
[8]. Wong G, Lambert MF, Leonard M, and Metcalfe AV. Drought analysis using trivariate copulas conditional on climatic states. Journal of Hydrologic Engineering. 2010; 15(2): 129-141.
[9]. Song S, and Singh VP. Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stochastic Environmental Research and Risk Assessment. 2010a; 24: 425–444.
[10]. Song S. and Singh VP. Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stochastic Environmental Research and Risk Assessment. 2010b; 24: 783–805.
[11]. Mirabbasi R, Anagnostou EN, Fakheri-Fard A, Dinpashoh Y, and Eslamian S. Analysis of Meteorological Drought in Northwest Iran using the Joint Deficit Index. Journal of Hydrology, 2013; 492: 35-48.
[12]. Mirabbasi R, Fakheri-Fard A, and Dinpashoh Y. Bivariate drought frequency analysis using the Copula method. Theoretical and Applied Climatology. 2013; 108: 191–206.
[13]. Loukas A, and Vasiliades L. Probabilistic analysis of drought spatiotemporal characteristics in Thessaly region, Greece. Natural Hazards and Earth System Sciences. 2004; 4: 719–731.
[14] McKee TB, Doeskin NJ, and Kleist J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Pp. 179-184. January 17-22, 1993; Anaheim, California.
[15]. Shiau JT, and Modarres R. Copula-based drought severity-duration-frequency analysis in Iran. Meteorological Applications. 2009; 16: 481–489.
[16]. Nelsen RB. An Introduction to Copulas. Springer. New York. 2006; 269 pp.
[17]. Genest C, and Rivest LP. Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association. 1993; 88 (423): 1034–1043.
[18]. Mirabbasi R, Fakheri-Fard A, Dinpashoh Y, and Eslamian S. Long term drought monitoring of Urmia using joint deficit index (JDI). Water and Soil Sciences. 2014; 23(4): 87-103. [Persian]
[19]. Kousari MR, and Asadi Zarch MA. Minimum, maximum, and mean annual temperatures, relative humidity, and precipitation trends in arid and semi-arid regions of Iran. Arabian Journal of Geosciences. 2011; 4(6): 907-914.
[20]. Kousari MR, Ekhtesasi MR, Tazeh M, Saremi Naeini M.A, and Asadi Zarch MA. An investigation of the Iranian climatic changes by considering the precipitation, temperature, and relative humidity parameters. Theoretical and Applied Climatology. 2011; 103: 321-335.
[21]. Kousari MR, Ahani H, Hendi-Zadeh R. Temporal and spatial trend detection of maximum air temperature in Iran during 1960–2005. Global and Planetary Change. 2013; 111:97-110.
[22]. Saboohi R, Soltani S, and khodagholi M, Trend analysis of temperature parameters in Iran. Theoretical and Applied Climatology. 2012; 109:529–547.
[23]. Tabari H, and Hosseinzadeh-Talaee. Analysis trends in temperature data in arid and semi-arid regions of Iran. Atmospheric Research. 2011; 79:1-10.
[24]. Zarenistanak M, Dhorde AG, and Kripalani RH. Temperature analysis over southwest Iran: trends and projections. Theoretical and Applied Climatology. 2014; 116(2): 103-117.
[25]. Mirabbasi R, and Dinpashoh Y. Trend analysis of precipitation of NW of Iran over the past half of the century. Journal of Irrigation Sciences and Engineering. 2013; 35(4): 59-73. [Persian]
 
 
 
دوره 4، شماره 2
تیر 1396
صفحه 573-585
  • تاریخ دریافت: 10 دی 1395
  • تاریخ بازنگری: 06 بهمن 1395
  • تاریخ پذیرش: 30 بهمن 1395
  • تاریخ اولین انتشار: 01 تیر 1396
  • تاریخ انتشار: 01 تیر 1396