تأثیر نویززدایی سری زمانی بر تحلیل آن با استفاده از نظریۀ نظم در بی‌نظمی (مطالعۀ موردی: رودخانۀ زاینده‌رود)

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکترای گروه مهندسی آب و سازه‌های هیدرولیکی، دانشکدۀ مهندسی عمران، دانشگاه سمنان

2 استادیار گروه مهندسی آب و سازه‌های هیدرولیکی، دانشکدۀ مهندسی عمران، دانشگاه سمنان

3 استاد گروه مهندسی آب و سازه‌های هیدرولیکی، دانشکدۀ مهندسی عمران، دانشگاه سمنان

چکیده

در پژوهش حاضر، ویژگی‌های غیرخطی جریان ماهانۀ رودخانۀ زاینده‌رود، در دو حالت قبل و بعد از نویززدایی، با استفاده از نظریۀ آشوب، طی 43 سال (1350 تا 1392) در چهار ایستگاه هیدرومتری ارزیابی شده است. برای تعیین روند آشوبی یا تصادفی‌بودن جریان رودخانۀ زاینده‌رود، اﺑﺘﺪا به بازسازی فضای حالت پرداخته شده است. به این دلیل، زمان تأخیر بهینه و بُعد محاط با استفاده از روش‌های میانگین اطلاعات متقابل و اﻟﮕﻮرﯾﺘﻢ نزدیک‌ترین همسایگی ﮐﺎذب محاسبه شده است. اﻣﮑﺎن وﺟﻮد آﺷﻮب در دﺑﯽ جریان ماهانه، در سری زمانی اصلی و نویزگیری‌شده، با استفاده از شاخص ﺑُﻌﺪ ﻫﻤﺒﺴﺘﮕﯽ ﺑﺮرﺳـﯽ شده است. بر اساس نتایج، ﺑُﻌﺪ ﻫﻤﺒﺴﺘﮕﯽ برای سری زمانی نویزگیری‌شده در ایستگاه‌های اسکندری، قلعه شاهرخ، پل زمانخان و پل کله به‌ترتیب برابر 94/5، 63/4، 89/2 و 30/3 برآورد شده است. ﻣﻘﺪار غیرصحیح این ﺑُﻌﺪ، بیان‌کنندۀ رﻓﺘـﺎر آﺷﻮﺑﻨﺎک دبی جریان ماهانۀ نویززدایی‌شدۀ رودخانۀ زاینده‌رود در ایستگاه‌های یادشده است. نبود بُعد همبستگی در سری زمانی اصلی، نشان‌دهندۀ تصادفی‌بودن سیستم است. در ادامه، ﺣﺴﺎﺳﯿﺖ ﺑﻪ ﺷﺮاﯾﻂ اولیۀ ﺳﯿﺴﺘﻢ، به عنوان یک مشخصۀ سیستم‌های آشوبناک، با استفاده از آزمون نمای لیاپانوف بررسی شده است. سپس‌، افق پیش‌بینی جریان در ایستگاه‌های نویزگیری‌شدۀ آشوبناک تعیین شده است که به‌ترتیب برابر 36، 41، 45 و 44 ماه است. یکی از راه‌کارهای مدیریت شرایط کم‌آبی و بحران منابع آب، پیش‌بینی جریان آب‏های سطحی است. با استفاده از داده‏های ماهانۀ نویزگیری‌شدۀ رودخانۀ زاینده‌رود، امکان پیش‌بینی جریان با استفاده از روش‏های مختلف فراهم است که برای سری زمانی اصلی، این امر مقدور نیست.

کلیدواژه‌ها

موضوعات


[1]. Honarbakhsh A, Karimian kakolaki R, shams Ghahfarokhi G, Davoudian Dehkordi A, Pajouhesh M. Flow modeling in a bend of a natural river based on different turbulence models (Case study: Doab Samsami River). Iranian Journal of Ecohydrology. 2018;5(3):907-916. (Persian)
[2]. Hashemi Golpayegani SMR. Chaos and its applications in engineering. Tehran: Amirkabir University of Technology; 2009. (Persian)
[3]. Seyedian S, Soleimani M, Kashani M. Predicting streamflow using data-driven model and time series. Iranian Journal of Ecohydrology. 2014; 1(3):167-179. (Persian)
[4]. Amiri E, Roudbari Mousavi M. Evaluation of IHACRES hydrological model for simulation of daily flow (case study Polrood and Shalmanrood rivers). Iranian Journal of Ecohydrology. 2016;3(4):533-543. (Persian)
[5]. Lorenz E. The essence of chaos. Seattle: University of Washington Press; 1993.
 
[6]. Porporato A, Ridolfi L. Nonlinear analysis of river flow time sequences. Water Resources Research. 1997;33(6):1353-1367.
[7]. Kantz H, Schreiber T. Nonlinear Time Series Analysis. UK: Cambridge University Press; 1997.
[8]. Sivakumar B, Phoon KK, Liong SY, Liaw CY. A systematic approach to noise reduction in chaotic hydrological time series. Journal of Hydrology. 1999;219(4):103-135.
[9]. Elshorbagy A, Simonovic SP, Panu US. Estimation of missing streamflow data using principles of chaos theory. Journal of Hydrology. 2002a; 255:123–133.
[10]. Ng W.W, Panu U.S, Lennox W.C. Chaos based analytical techniques for daily extreme hydrological observations. Journal of Hydrology. 2007;342:17-41.
[11]. Fattahi MH. Applying a noise reduction method to reveal chaos in the river flow time series. International Journal of Environmental, Ecological, Geological and Mining Engineering. 2014;8(8):524-531.
[12]. Rezaei H, Jabbari Gharabagh S. Noise reduction effect on chaotic analysis of Nazluchay River flow. Water and Soil Science. 2017;27(3):239-250. (Persian)
[13]. Iranmehr M, Pourmanafi S, Soffianian A. Ecological monitoring and assessment of spatial-temporal changes in land cover with an emphasis on agricultural water consumption in Zayandeh Rood region. Iranian Journal of Ecohydrology. 2015; 2(1):23-38. (Persian)
[14]. Takens F. Detecting strange attractors in turbulence. Berlin: SpringerVerlag. 1981.
 
[15]. Wang W, Vrijling JK, Van Gelder PH, Ma J. Testing for nonlinearity of streamflow processes at different time scales. Journal of Hydrology. 2006;322(1):247–268.
[16]. Dhanya CT, Kumar DN. Multivariate nonlinear ensemble prediction of daily chaotic rainfall with climate input. Journal of Hydrology. 2011;403:292-306.
[17]. Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica D. 1983;9:189-208.
[18]. Brock WA, Sayers CL. Is the business cycle characterized by deterministic chaos?. Journal of Monetary Economics. 1988;22(1):71-90.
[19]. Shang P, Li X, Kamae S. Chaotic analysis of traffic time series. Chaos, Solitons and Fractals. 2005;25:121-128.
[20]. Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena. 1985;16(3):285-317.
[21]. Rosenstein M.T, Collins J.J, De Luca C.J. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena. 1993;65(1-2):117-134.
[22]. Scheriber T. Extremely simple nonlinear noise-reduction method. Physical Review. E. 1993;47(4):2401-2404.
[23]. Hegger R, Kantz H, Schreiber T. Practical implementation of nonlinear time series methods: The TISEAN package. Chaos: An Interdisciplinary Journal of Nonlinear Science. 1999;9(2):413-35.
دوره 6، شماره 1
فروردین 1398
صفحه 15-27
  • تاریخ دریافت: 01 خرداد 1397
  • تاریخ بازنگری: 13 آبان 1397
  • تاریخ پذیرش: 13 آبان 1397
  • تاریخ اولین انتشار: 01 فروردین 1398
  • تاریخ انتشار: 01 فروردین 1398