ارزیابی سیستم‌های مختلف سرمایش گلخانه در اقلیم‌های متنوع ایران با توجه به کاهش منابع آب

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکدۀ انرژی، دانشگاه صنعتی شریف تهران

2 استادیار، دانشکدۀ مکانیک، دانشگاه شیراز

3 دانشیار، دانشکدۀ علوم و فنون نوین دانشگاه تهران

4 دانشجوی دکتری، دانشکدۀ علوم و فنون نوین، دانشگاه تهران

چکیده

هدف از پژوهش حاضر، ارائۀ چارچوبی است که فنی-اقتصادی‏ترین سیستم سرمایش را با توجه به اقلیم‏های مختلف آب و هوایی ایران، قیمت حامل‏های آب و انرژی، و شرایط کشت مناسب محصول بر‏گزیند. همچنین، سیاست‏گذار را قادر ‏سازد تا به‏گونه‏ای قیمت آب را تعیین کند تا کشاورز کم‏مصرف‏ترین سیستم سرمایش را از نظر مصرف آب برای گلخانه برگزیند. سه نوع مختلف سیستم سرمایش شامل سیستم‏های فن و پد تبخیری، انبساط مستقیم و چیلر جذبی برای پنج اقلیم آب و هوایی متنوع ایران ارزیابی شده است. ارزیابی در سه سناریو صورت می‏گیرد که در آن سناریوهای نخست و دوم تمام سیستم‏های سرمایش را تحت قیمت‏های فعلی و واقعی آب بررسی می‏کند، در حالی ‏که سناریوی سوم قیمت بهینۀ آب را به‏گونه‏ای اختیار می‏کند که سیستم سرمایش با کمینۀ مصرف آب انتخاب شود. نتایج نشان می‏دهد سیستم سرمایش فن و پد که قبلاً باور بر این بود که فنی-اقتصادی‏ترین سیستم سرمایش برای گلخانه‏های ایران است، در حقیقت فنی-اقتصادی‏ترین سیستم سرمایش برای تمام اقلیم‏های آب و هوایی ایران نیست و سیستم سرمایش انبساط مستقیم (تراکمی) با میانگین هزینۀ معادل سرمایش 0427/0 و 2733/0 دلار بر کیلو‏وات ساعت سرمایش در مقابل 0510/0 و 8264/0 دلار بر کیلو‏وات ساعت سرمایش میانگین هزینه معادل سرمایش سیستم سرمایش فن و پد، به‌ترتیب در سناریو‏های اول و دوم برتری یافته است. درنهایت، سناریوی سوم این‏گونه پیشنهاد می‏کند که با افزایش 4/17 درصدی قیمت آب، کشاورز متقاعد خواهد شد تا در سراسر اقلیم‏های آب و هوایی ایران، سیستم سرمایشی‏ای انتخاب کند که کمترین میزان مصرف آب را دارد.

کلیدواژه‌ها

موضوعات


[1]. Leng G, Huang M, Tang Q, Leung LR. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate. J Adv Model Earth Syst. 2015;7(3):1285–304.
[2]. Rockström J, Falkenmark M, Karlberg L, Hoff H, Rost S, Gerten D. Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour Res. 2009;45(7).
[3]. Arnell NW. Climate change and global water resources : SRES emissions and socio-economic scenarios. 2004;14:31–52.
[4]. Alcamo J, Flörke M, Märker M. Future Long-Term Changes in Global Water Resources Driven by Socio- Future long-term changes in global water resources driven by socio-economic and climatic changes. 2007;(April).
[5]. Ashraf B, Yazdani R, Mousavi-Baygi M, Bannayan M. Investigation of temporal and spatial climate variability and aridity of Iran. Theor Appl Climatol. 2014;118(1–2):35–46.
[6]. Madani K. Water management in Iran: what is causing the looming crisis? J Environ Stud Sci. 2014;4(4):315–28.
[7]. Madani K, AghaKouchak A, Mirchi A. Iran’s socio-economic drought: challenges of a water-bankrupt nation. Iran Stud. 2016;49(6):997–1016.
[8]. Sadegh M, Mahjouri N, Kerachian R. Optimal inter-basin water allocation using crisp and fuzzy Shapley games. Water Resour Manag. 2010;24(10):2291–310.
[9]. Mirchi A, Watkins DW, Huckins CJ, Madani K, Hjorth P. Water resources management in a homogenizing world: Averting the Growth and Underinvestment trajectory. Water Resour Res. 2014;50(9):7515–26.
[10].            Proch P, Maitah M, Pljuˇ I. Evaluation of Water Scarcity in Selected Countries of the Middle East. :1–18.
[11].            Roudi-Fahimi F, Creel L, De Souza R-M. Finding the balance: Population and water scarcity in the Middle East and North Africa. Popul Ref Bur Policy Br. 2002;1–8.
[12].            Girardet, E. and Walter J. Crosslines Essential Field Guide to Afghanistan. second edi. Geneva: Media Action International; 2004.
[13].            Al-nasser AY, Bhat NR. Protected Agriculture in the State of Kuwait. 1990;17–23.
[14].            Hirich A, Choukr-allah R. Water and Energy Use Ef fi ciency of Greenhouse and Net house Under Desert Conditions of UAE : Agronomic and Economic Analysis.
[15].            Kumar KS, Tiwari KN, Jha MK. Design and technology for greenhouse cooling in tropical and subtropical regions : A review. 2009;41:1269–75.
[16].            Ghani S, Bakochristou F, Mohamed E, Ahmed A, Mahmoud S, Gamaledin A, et al. Engineering in Agriculture , Environment and Food Design challenges of agricultural greenhouses in hot and arid environments – A review. Eng Agric Environ Food [Internet]. 2018;(May):0–1. Available from: https://doi.org/10.1016/j.eaef.2018.09.004
 
[17].            Baeza EJ, Pérez-Parra JJ, Montero JI, Bailey BJ, López JC, Gázquez JC. Analysis of the role of sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamics. Biosyst Eng. 2009;104(1):86–96.
[18].            Roldán JJ, Garcia-Aunon P, Garzón M, de León J, del Cerro J, Barrientos A. Heterogeneous multi-robot system for mapping environmental variables of greenhouses. Sensors. 2016;16(7):1018.
[19].            Cockshull KE, Graves CJ, Cave CRJ. The influence of shading on yield of glasshouse tomatoes. J Hortic Sci. 1992;67(1):11–24.
[20].            Sethi VP, Sharma SK. Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications. Sol energy. 2008;82(9):832–59.
[21].            Ishii M, Okushima L, Moriyama H, Sase S. An Overview of Natural Ventilation, Airflow, Evaporative Cooling and Heat Pump Heating in Greenhouses under Mild Climatic Conditions. In: International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1037. 2013. p. 493–500.
[22].            Villarreal-Guerrero F, Kacira M, Fitz-Rodríguez E, Kubota C, Giacomelli GA, Linker R, et al. Comparison of three evapotranspiration models for a greenhouse cooling strategy with natural ventilation and variable high pressure fogging. Sci Hortic (Amsterdam). 2012;134:210–21.
[23].            Arbel A, Yekutieli O, Barak M. Performance of a fog system for cooling greenhouses. J Agric Eng Res. 1999;72(2):129–36.
[24].            Bucklin RA, Henley RW, McConnell DB. Fan and pad greenhouse evaporative cooling systems. Circ (Florida Coop Ext Serv. 1993;
[25].            Rorabaugh P, Jensen M, Giacomelli G. Introduction to Controlled Environment Agriculture and Hydroponics. Control Environ Agric Cent. 2002;1–130.
[26].            Anifantis AS, Colantoni A, Pascuzzi S. Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating. Renew energy. 2017;103:115–27.
[27].            Paksoy HÖ, Beyhan B. Thermal energy storage (TES) systems for greenhouse technology. In: Advances in thermal energy storage systems. Elsevier; 2015. p. 533–48.
[28].            Courtois N, Grisey A, Grasselly D, Menjoz A, Noël Y, Petit V, et al. Application of Aquifer Thermal Energy Storage for heating and cooling of greenhouses in France: a pre-feasibility study. In: European Geothermal Congress 2007. 2007. p. 8–p.
[29].            Wong B, McClung L, Snijders A, McClenahan D, Thornton J. The application of aquifer thermal energy storage in the Canadian greenhouse industry. In: International Symposium on High Technology for Greenhouse Systems: GreenSys2009 893. 2009. p. 437–44.
[30].            Sanaye S, Niroomand B. Horizontal ground coupled heat pump: Thermal-economic modeling and optimization. Energy Convers Manag. 2010;51(12):2600–12.
[31].            Attar I, Naili N, Khalifa N, Hazami M, Lazaar M, Farhat A. Experimental study of an air conditioning system to control a greenhouse microclimate. Energy Convers Manag. 2014;79:543–53.
[32].            Ganji MH, Tavassoli M. Climatic Characteristics and Classi fi cation of Iran , Studies of the Hot Arid Zone 1. Vol. 1. 2016.
[33].            Sanaye S, Malekmohammadi HR. Thermal and economical optimization of air conditioning units with vapor compression refrigeration system. Appl Therm Eng. 2004;24(13):1807–25.
[34].            Younker DL. Value Engineering: Analysis and Methodology [Internet]. Cost Engineering. 2003. 326 p. Available from: http://books.google.com/books?id=Mtq_qunJIBMC&pgis=1
[35].            G. Snyder R. Greenhouse Tomato Handbook [Internet]. Central Mississippi Research and Extension Center; Available from: https://ag.umass.edu/sites/agcenter/files/pdf-doc-ppt/p1828.pdf
[36].            statistics and information network | Iran's energy balance spreadsheet 2015-2016 94 [Internet]. [cited 2019 Jan 18]. Available from: http://isn.moe.gov.ir/گزارشات-اماری/ترازنامه-انرژی-سال-94
[37].            Favre M, Montginoul M. Water pricing in Tunisia: Can an original rate structure achieve multiple objectives? Util Policy [Internet]. 2018;55(October):209–23. Available from: https://doi.org/10.1016/j.jup.2018.06.004
[38].            Cooper B, Crase L, Pawsey N. Best practice pricing principles and the politics of water pricing. Agric Water Manag [Internet]. 2014;145:92–7. Available from: http://dx.doi.org/10.1016/j.agwat.2014.01.011
 
دوره 6، شماره 1
فروردین 1398
صفحه 257-265
  • تاریخ دریافت: 01 مرداد 1397
  • تاریخ بازنگری: 13 بهمن 1397
  • تاریخ پذیرش: 13 بهمن 1397
  • تاریخ اولین انتشار: 01 فروردین 1398
  • تاریخ انتشار: 01 فروردین 1398