[1]. Jonkman SN. Global perspectives on loss of human life caused by floods. Nat. Hazards Dordr. (Dordr). 2005; 34: 151–175.
[2]. Leopold LB. Hydrology for urban planning. US Geological Survey, Washington, DC. (Available from: http://eps. berkeley. edu/people/lunaleopold/); 1968.
[3]. Solaimani K. Flood hazard zonation in Mazandaran. Project final report, Mazandaran Management and planning Organisation; 2006. 430 p. [Persian]
[4]. Hammer T.R. Stream channel enlargement due to urbanization. Water Resources Research. 1972; 8: 1530-1540.
[5]. Schueler T. The importance of imperviousness watershed protection. 2nd int. conf. on urban drainage. 1994; 322-330.
[6]. Paul MJ, Meyer JL. Streams in the urban landscape. Annual review of ecology and systematic. 2001; 333-365.
[7]. Solaimani K. Hydrology and Quantitative Modeling of Urban Floods in GIS and SWM Environment. Iranian Remote Sensing & GIS Association; 2015. 322 p. [Persian].
[8]. Boccardo P, Tonolo FG. Remote sensing role in emergency mapping for disaster response. In Engineering Geology for Society and Territory-Volume 5. Springer, Cham; 2015.p. 17-24.
[9]. Giordan D, Notti D, Villa A. Zucca F, Calò F, Pepe A. Lowcost, multiscale and multi-sensor application for flooded area mapping. Nat. Hazards Earth Syst. Sci. 2018; 1493–1516.
[10]. Kumar R, Singh R, Gautam H, Pandey MK. Flood hazard assessment of August 20, 2016f loods in Satna District, Madhya Pradesh, India. Remote Sens. Appl. Soc. Environ. 2018; 11: 104–118.
[11]. Schumann GJP. Preface: remote sensing in flood monitoring and management. Remote Sens. (Basel). 2015; 7: 17013–17015.
[12]. Rokni K, Ahmad A, Selamat A, Hazini S. Water feature extraction and change detection using multitemporal landsat imagery. Remote Sens. (Basel). 2014; 6: 4173–4189. [Persian]
[13]. Townsend PA, Walsh SJ. Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology. 1998; 21: 295-312.
[14]. Ronald T, Eguchi RT, Huyck CK, Ghos S, Adams BJ. The Application of Remote Sensing Technologies for Disaster Management. The 14th World Conference on Earthquake Engineering October. 2008; 12-17
[15]. Shrestha R, Di L, Yu G, Shao Y, Kang L, Zhang B. Detection of flood and its impact on crops using NDVI-Corn case. In Agro- Geoinformatics (Agro-Geoinformatics). Second International Conference; 2013.p. 200-204.
[16]. EIpki A, Rezai Y, Heydari Mozaffar M, Tarabzadeh Khorasani H. Evaluation and Survey of Surface Flood Changes Using Satellite Images (Case Study: Ilam Province). Hamedan Institute of Higher Education and Development. MA Thesis. 2016. [Persian].
[17]. Liping Di, Eugene Yu, Shrestha R, Lin L. DVDI: A New Remotely Sensed Index for Measuring Vegetation Damage Caused by Natural Disasters. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium; 2018.p. 9067-9069.
[18]. Sarah Di, Liying G, Lin L. Rapid Estimation of Flood Crop Loss by Using DVDI. 7th International Conference on Agro-geoinformatics (Agro-geoinformatics). Hangzhou, China. DOI: 10.1109/Agro-Geoinformatics; 2018.
[19]. Wu H, Adler RF, Tian Y, Huffman GJ, Li H, Wang J. Real‐time global flood estimation using satellite‐based precipitation and a coupled land surface and routing model. Water Resources Research. 2014; 50(3): 2693-2717.
[20]. Rajabizadeh Y, Ayyoubzadeh S.A, Zahiri A. Flood survey of Golestan province in 2017-2018 and providing solutions for its control and management in the future. Iranian Journal of Ecohydrology. 2019 (a); 6(4): 921-942. [Persian].
[21]. Rajabizadeh Y, Ayyoubzadeh S.A, Ghomshi M. Investigation of floods in Khuzestan province during the water year 2018-2019 and providing solutions for its control and management in the future. Iranian Journal of Ecohydrology. 2019 (b); 6(4): 1069-1084. [Persian].
[22]. Goffi A, Stroppiana D, Brivio PA, Bordogna G, Boschetti M. Towards an automated approach to map flooded areas from Sentinel-2 MSI data and soft integration of water spectral features. International Journal of Applied Earth Observation and Geoinformation. 2020; 84: 101951.
[23]. www.usgs.gov/centers/eros/science/usgs-eros-archive-sentinel-2?qt-science center objects