[1]. Ghafoori Kharanagh S, Banihabib M, Javadi S. challenges and solutions for the groundwater governance in Yazd-Ardakan plain using DPSIR. Iranian Journal of Ecohydrology. 2019; 4: 1029-1043. [persian]
[2]. Zhang C, Chen X, Li Y, Ding W, Fu G. Water-energy-food nexus: concepts, questions and methodologies. Journal of Cleaner Production. 2018; 195: 625-639.
[3]. Zhang X, Vesselinov VV. Integrated modeling approach for optimal management of water, energy and food security nexus. Advances in Water Resources. 2017; 101: 1-10.
[4]. Zhang J, Campana J, Yao PE, Zhang T, Lundblad Y, Melton A, et al. The water-food-energy nexus optimization approach to combat agricultural drought: A case study in the United States. Applied Energy. 2017: 1-16.
[5]. Yuan KY, Lin YC, Chiueh PT, Lo SL. Spatial optimization of the food, energy, and water nexus: A life cycle assessment-based approach. Energy Policy. 2018; 119: 502-514.
[6]. Uen TS, Chang FJ, Zhou Y, Tsai WP. Exploring synergistic benefits of water-food-energy nexus through multi-objective reservoir optimization schemes.Science of The Total Environment. 2018; 633: 341-51.
[7]. Karnib A. Water, energy and food nexus: The Q-Nexus model. 10th World Congress on Water Resources and Environment. 2017.
[8]. Campana P, Zhang PE, Yao J, Andersson T, Landelius S, Melton T, et al. Managing agricultural drought in Sweden using a novel spatially-explicit model from the perspective of water-food-energy nexus.Journal of Cleaner Production. 2018; 197: 1382-1393.
[9]. Wicaksono A, Jeong G, Kang D. Water – energy – food nexus simulation: an optimization approach for resource security. Water. 2019; 11: 667-684.
[10]. Li M, Fu M, Singh Q, Ji VP, Liu Y, Zhang D, et al. An optimal modelling approach for managing agricultural water-energy- food nexus under uncertainty. Science of The Total Environment. 2019; 651: 1416-1434.
[11].Li D, Fu M, Singh Q, Liu VP, Fu T. Stochastic multi-objective modeling for optimization of water-food-energy nexus of irrigated agriculture. Advances in Water Resources. 2019; 127: 209-224
[12]. Li M, Singh VP, Fu Q. Optimization of agricultural water – food – energy nexus in a random environment: An integrated modelling approach. Stochastic Environmental Research and Risk Assessment. 2019; 4: 1-17.
[13]. Goodarzi M, Piryaei R, mousavi M. Climatic changes and the application of an urban WEF NEXUS approach to the utilization of the existing recources in Boroujerd. Iranian Journal of Ecohydrology. 2019; 3: 569-584. [persian]
[14]. Ketabchi H, Ataie-Ashtiani B. Evolutionary algorithms for the optimal management of coastal groundwater: A comparative study toward future challenges. Journal of Hydrology. 2015; 520: 193-213.
[15]. Wicaksono A, Katolik U. A development of system dynamics model for simulation of water, energy, and food nexus. 12th International Conference on Hydroinformatics. 2018.