ارزیابی کارایی روش ماسکینگام خطی در روندیابی سیل در سدهای سنگریزه‌ای تأخیری دوگانه

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکترای مهندسی آب و سازه ‏های هیدرولیکی، گروه مهندسی عمران، دانشکدۀ فنی و مهندسی، دانشگاه زنجان، زنجان، ایران

2 دانشیار، گروه مهندسی عمران، دانشکدۀ فنی و مهندسی، دانشگاه زنجان، زنجان، ایران

چکیده

یکی از ‌کاربردهای مهم سدهای سنگریزه‏ای، کنترل سیل از طریق کاهش دبی اوج سیل ورودی است. بررسی اینکه چه مقدار از دبی ورودی به مخزن دارای سد سنگریزه‏ای در شرایط جریان غیرماندگار به پایین‏دست منتقل می‏شود، اهمیت زیادی دارد. در پژوهش حاضر، روندیابی سیل در سدهای سنگریزه‏ای تأخیری دوگانه با استفاده از 4 نمونه از داده‏های آزمایشگاهی موجود و روش ماسکینگام خطی و الگوریتم بهینه‏سازی ازدحام ذرات (PSO) بررسی شده‏ و تأثیر طول سد سنگریزه‏ای و فاصلۀ بین دو سد و همچنین، تأثیر اندازۀ قطر سنگدانه‏ها روی ضریب K روش ماسکینگام خطی ارزیابی شده ‏است. نتایج بیانگر آن است که مقادیر میانگین خطای نسبی (MRE) 4 آزمایش استفاده‌شده در پژوهش حاضر، به‌ترتیب برابر با 9/4، 4/3، 35/4 و 55/3 درصد و مقادیر مربوط به خطای نسبی دبی اوج (DPO) آزمایش‏های یادشده نیز به‏ترتیب برابر با 58/1، 47/0، 86/2 و 78/1 درصد محاسبه‏ شده که بیانگر دقت زیاد روش ماسکینگام خطی در برآورد هیدروگراف خروجی است. همچنین، نتایج نشان می‏دهد هرچه فاصله بین هیدروگراف ورودی و خروجی افزایش یابد، مقدار K افزایش یافته و هرچه اندازۀ قطر سنگدانه‏ها افزایش یابد، سرعت جریان افزایش یافته و به تبع آن، مقدار K کاهش می‏یابد.

کلیدواژه‌ها


[1]. McWhorter, D. B. Sunada, D. K. and Sunada, D. K. Ground-water hydrology and hydraulics. Water Resources Publication.‏LLC. U.S.Library. 1977
[2]. Hansen, D. Garga, V. K. and Townsend, D. R. Selection and application of a one-dimensional non-Darcy flow equation for two-dimensional flow through rockfill embankments. Canadian Geotechnical Journal. 1995; 32(2): 223-232.‏
[3]. Forchheimer, P. Wasserbewagung Drunch Boden, Z.Ver, Deutsh. Ing. 1901; 45: 1782-1788.
[4]. Leps, T. M. Flow through rockfill, Embankment-dam engineering casagrande volume edited by Hirschfeld, RC and Poulos, SJ.‏ 1973.
[5]. Stephenson, D. J. Rockfill in hydraulic engineering. Elsevier scientific publishing compani.‏ Distributors for the United States and Canada. 1979.
[6]. Subramanya. K, Engineering hydrology. 1994; 2nd Ed.
[7]. Tsai CW. Flood routing in mild-sloped rivers—wave characteristics and downstream backwater effect. Journal of Hydrology. 2005; 308 (1-4):151-67.
[8]. Hosseini, S. M. Joy, D. M. Development of an unsteady model for flow through coarse heterogeneous porous media applicable to valley fills. International Journal of River Basin Management. 2007; 5(4): 253-265.
[9]. Nagesh Kumar, D., & Janga Reddy, M. Multipurpose reservoir operation using particle swarm optimization. Journal of Water Resources Planning and Management, 2007; 133(3), 192-201.‏
[10]. Meraji, S. H. Optimum design of flood control systems by particle swarm optimization algorithm (Doctoral dissertation, M. Sc. thesis, Iran University of Science and Technology).‏ 2004.
[11]. Afshar, A., Kazemi, H., & Saadatpour, M. Particle swarm optimization for automatic calibration of large scale water quality model (CE-QUAL-W2): Application to Karkheh Reservoir, Iran. Water resources management, 2011; 25(10), 2613-2632.
[12]. Lu, W. Z., Fan, H. Y., Leung, A. Y. T., & Wong, J. C. K. Analysis of pollutant levels in central Hong Kong applying neural network method with particle swarm optimization. Environmental monitoring and assessment, 2002; 79(3), 217-230.‏
[13]. Chau, K. A split-step PSO algorithm in prediction of water quality pollution. In International Symposium on Neural Networks, 2005; (pp. 1034-1039). Springer, Berlin, Heidelberg.
[14]. Chu, H. J., & Chang, L. C. Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. Journal of Hydrologic Engineering, 2009; 14(9), 1024-1027.‏
[15]. Moghaddam, A., Behmanesh, J., & Farsijani, A. Parameters estimation for the new four-parameter nonlinear Muskingum model using the particle swarm optimization. Water resources management, 2016; 30(7), 2143-2160.‏
 
[16]. Bazargan, J., & Norouzi, H. Investigation the Effect of Using Variable Values for the Parameters of the Linear Muskingum Method Using the Particle Swarm Algorithm (PSO). Water Resources Management, 2018; 32(14), 4763-4777.‏
[17]. Norouzi, H. & Bazargan, J. Flood routing by linear Muskingum method using two basic floods data using particle swarm optimization (PSO) algorithm. Water Science and Technology: Water Supply. 2020; 20(5): 1897-1908.
[18]. Ergun, S. Fluid Flow through Packed Columns. Chemical Engineering Progress. 1952; 48: 89–94.
[19]. Ward, J. C. Turbulent flow in porous media. Journal of the hydraulics division. 1964; 90(5): 1-12.‏
[20]. Ahmed, N. and Sunada, D. K. Nonlinear flow in porous media. Journal of the Hydraulics Division, 1969; 95(6): 1847-1858.‏
[21]. Sidiropoulou, M. G., Moutsopoulos, K. N., & Tsihrintzis, V. A. Determination of Forchheimer equation coefficients a and b. Hydrological Processes. 2007; 21(4), 534-554.‏ https://doi.org/10.1002/hyp.6264.
[22]. Sadeghian, J. Khayat Kholghi, M. Horfar, A. and Bazargan, J. Comparison of binomial and power equations in radial non-darcy flows in coarse porous media. Journal of Water Sciences Research. 2013; 5(1): 65-75.‏
[23]. Sedghi-Asl, M. Ansari, I. Adoption of extended dupuit–Forchheimer assumptions to non-darcy flow problems. Transport in Porous Media. 2016; 113(3): 457-469.‏
[24]. Di Nucci, C. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face. Comptes Rendus Mécanique. 2018; 346(5): 366-383.
[25]. Mohan, S. Parameter estimation of nonlinear Muskingum models using genetic algorithm. Journal of hydraulic engineering, 1997; 123(2), 137-142.‏
 
[26]. Barati, R. Parameter estimation of nonlinear Muskingum models using Nelder-Mead simplex algorithm. Journal of Hydrologic Engineering, 2011; 16(11), 946-954.‏
[27]. Hirpurkar, P., & Ghare, A. D. Parameter estimation for the nonlinear forms of the Muskingum model. Journal of Hydrologic Engineering, 2014; 20(8), 04014085.‏
[28]. Niazkar, M., & Afzali, S. H. Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method. Hydrology Research, 2016; DOI: 10.2166/nh.2016.089.
[29]. Zhang, S., Kang, L., Zhou, L., & Guo, X. A new modified nonlinear Muskingum model and its parameter estimation using the adaptive genetic algorithm. Hydrology Research, 2017; 48(1), 17-27.‏ DOI: 10.2166/nh.2016.185.
[30]. Kalagar Naftchali, B. Comparison between mathematical model and experimental data for flood routing in reservoirs of multiple detention rockfill dams. M. Sc. Thesis, Iran University of Tarbiat Modarres. 2003.
[31]. McCarthy G. T. The unit hydrograph and flood routing. New London. Conference North Atlantic Division. US Army Corps of Engineers. New London. Conn. USA. 1938.
[32]. Chow, Vente. open channel hydraulics, Newyork;Macgraw-Hill book company. 1959.
[33]. Eberhart, R. and Kennedy, J. A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on. 1995; 39-43.
[34]. Shi, Y. and Eberhart, R. A modified particle swarm optimizer. In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on. 1998; 69-73.
[35]. Di Cesare, N. Chamoret, D. and Domaszewski, M. A new hybrid PSO algorithm based on a stochastic Markov chain model. Advances in Engineering Software. 2015; 90: 127-137.
دوره 7، شماره 4
دی 1399
صفحه 1061-1070
  • تاریخ دریافت: 10 مرداد 1399
  • تاریخ بازنگری: 16 آبان 1399
  • تاریخ پذیرش: 16 آبان 1399
  • تاریخ اولین انتشار: 28 آذر 1399
  • تاریخ انتشار: 01 دی 1399