شناسایی مناطق سیل‏ زده با محاسبات آماری سری زمانی بر پایۀ تلفیق داده‌های راداری و اپتیکی

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد فتوگرامتری، دانشکدۀ نقشه ‏برداری، دانشگاه خواجه ‏نصیرالدین طوسی

2 استاد دانشکدۀ مهندسی نقشه‏ برداری، عضو قطب علمی فناوری اطلاعات مکانی، دانشگاه صنعتی خواجه ‏نصیرالدین طوسی

3 استادیار دانشکدۀ عمران، دانشگاه صنعتی نوشیروانی بابل

چکیده

همواره مخاطرات طبیعی در زندگی انسان‏ ها آثار مخربی داشته است که سیل یکی از انواع جدی آن‏ است. بنابراین، ارائۀ روش‏ های سریع شناسایی سیلاب برای مدیریت بحران ضرورت زیادی دارد. هدف از این تحقیق، ارائۀ روشی با دقت و سرعت‏ مناسب در تهیۀ نقشۀ سیلاب است. در این تحقیق از دو سری زمانی داده‏ های سنتینل 1 و لندست 8 برای تهیۀ نقشۀ شدت سیل با ترکیب روش محاسبات آماری و شاخص‏ های استخراجی استفاده شد. الگوریتم پیشنهادی به این‌ترتیب است که ابتدا نقشۀ پهنه ‏های آبی دائمی به‏ صورت خودکار توسط تصاویر ماهواره ‏ای اپتیکی طی 5 سال تهیه می ‏شود. سپس، برای تعیین شدت سیلاب در مناطق مختلف از محاسبات آماری روی باندهای سری زمانی تصاویر راداری بهره گرفته می ‏شود و درنهایت، با استفاده از شاخص نرمال‏ شده تفاوت سیل که قابلیت شناسایی سریع سیل را دارد، نقشۀ نهایی سیلاب به دست می‏ آید. رویکرد پیشنهادی در پی رخداد سیل 1398 روی دو منطقۀ گلستان و خوزستان که دارای شرایط جغرافیایی متفاوت هستند، پیاده ‏سازی شده است. ارزیابی‏ ها به کمک نقشه‏ های واقعیت زمینی و ماتریس ابهام صورت گرفته و علاوه بر آن، برای تحلیل‏ های کامل‏تر از آزمون مک‏ نمار نیز استفاده ‏شده است. پیاده‏ سازی الگوریتم در محیط ارث‌ انجین نشان داد این روش در کنار داشتن دقت زیاد، امکان استفاده از صدها تصویر را بدون نیاز به سخت ‏افزارهای خاص فراهم می‏ آورد. دقت کلی به‏ عنوان نمونه در یک دورۀ زمانی در استان گلستان و خوزستان به‌ترتیب 84/91 و 36/97 بوده که نشان ‏دهندۀ قابلیت تعمیم‏ پذیری زیاد الگوریتم در مناطق با وسعت‏ های متفاوت است.

کلیدواژه‌ها

موضوعات


[1]. Chi, M., et al., Big data for remote sensing: Challenges and opportunities. Proceedings of the IEEE, 2016. 104(11): p. 2207-2219.
[2]. Ma, Y. et al. Remote sensing big data computing: Challenges and opportunities. Future Generation Computer Systems,2015, p. 47-60.
[3]. Amani, M. et al. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020.
[4]. Inman, V.L. and M.B. Lyons, Automated inundation mapping over large areas using Landsat data and Google Earth Engine. Remote Sensing, 2020. 12(8): p. 1348.
[5]. Singha, M. et al. Identifying floods and flood-affected paddy rice fields in Bangladesh based on Sentinel-1 imagery and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2020. 166: p. 278-293.
[6]. Pham-Duc, B. C. Prigent, and F. Aires, Surface water monitoring within Cambodia and the Vietnamese Mekong Delta over a year, with Sentinel-1 SAR observations. Water, 2017. 9(6): p. 366.
[7]. Dao, P.D. N.T. Mong, and H.P. Chan, Landsat-MODIS image fusion and object-based image analysis for observing flood inundation in a heterogeneous vegetated scene. GIScience & Remote Sensing, 2019. 56(8): p. 1148-1169.
[8]. Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing, 2006. 27(14): p. 3025-3033.
[9]. Feyisa, G.L. et al. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 2014. 140: p. 23-35.
[10]. Wan, K.M. and L. Billa, Post-flood land use damage estimation using improved Normalized Difference Flood Index (NDFI 3) on Landsat 8 datasets: December 2014 floods, Kelantan, Malaysia. Arabian Journal of Geosciences, 2018. 11(15): p. 434.
[11]. Cian, F. M. Marconcini, and P. Ceccato, Normalized Difference Flood Index for rapid flood mapping: Taking advantage of EO big data. Remote Sensing of Environment, 2018. 209: p. 712-730.
[12]. Otsu, N. A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 1979. 9(1): p. 62-66.
[13]. F. Saeed zadeh, et al. Change Detection of Multitemporal Sattelite Images by Comparison of Binary Mask and Most Classification Comparison Methods. Journal of Geomatics Science and Technology, 2016. 5(3): p. 111-128.
[14]. DeVries, B. et al. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sensing of Environment, 2020. 240: p. 111664.
[15]. Zhu, X. et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 2010. 114: p. 2610-2623.
[16]. Kiani, A. H. Ebadi, and F. Farnood Ahmadi, Development of an object-based interpretive system based on weighted scoring method in a multi-scale manner. ISPRS International Journal of Geo-Information, 2019. 8(9): p. 398.
[17]. Mushore, T.D. et al. Assessing the potential of integrated Landsat 8 thermal bands, with the traditional reflective bands and derived vegetation indices in classifying urban landscapes. Geocarto international, 2017. 32(8): p. 886-899.
دوره 8، شماره 3
مهر 1400
صفحه 623-639
  • تاریخ دریافت: 01 اسفند 1399
  • تاریخ بازنگری: 14 تیر 1400
  • تاریخ پذیرش: 26 خرداد 1400
  • تاریخ اولین انتشار: 15 تیر 1400
  • تاریخ انتشار: 01 مهر 1400