ریزمقیاس‌نمایی متغیرهای بارش و دما با استفاده از مدل CanESM2 تحت سناریوهای RCP (مطالعۀ موردی: رودخانه هررود لرستان)

نوع مقاله : پژوهشی

نویسندگان

1 استادیار، دانشکدۀ کشاورزی، دانشگاه لرستان، خرم آباد

2 دانشجوی دکتری مهندسی سازه‏های آبی، دانشکدۀ کشاورزی، دانشگاه لرستان، خرم آباد

3 دانشیار، دانشکدۀ کشاورزی، دانشگاه لرستان، خرم آباد

4 دانشیار، گروه انرژی های نو و محیط زیست، دانشکدۀ علوم و فنون نوین، دانشگاه تهران، تهران

چکیده

در پژوهش حاضر، اثرات تغییر اقلیم بر متغیرهای هواشناسی در حوضۀ آبریز رودخانه هررود لرستان با استفاده از مدل پیش‏بینی‏کنندۀ CanESM5 تحت سناریوهایRCP (RCP2.6، RCP4.5 و RCP8.5) براساس گزارش ششم IPCC برای سه دورۀ زمانی 25 ساله آیندۀ نزدیک (2026-2050)، آیندۀ میانی (2051-2075) و آیندۀ دور (2076-2100) میلادی مورد ارزیابی قرار گرفت. به ‏منظور ریزمقیاس‌نمایی پارامترهای بارش و دمای متوسط از مدل ریزمقیاس‌گردانی SDSM و یک دورۀ زمانی 1970ـ 2005 میلادی در دو ایستگاه هواشناسی کاکارضا و دهنو استفاده شد. نتایج به‌‌دست‌آمده از این پژوهش در هر دو ایستگاه کاکارضا و دهنو، نشان‏دهندۀ کاهش بارش و افزایش دمای متوسط تحت سناریوهای RCP در دوره‏های زمانی آتی نسبت به دورۀ پایه بود؛ به گونه‏ای که در بازۀ زمانی آیندۀ دور (2076-2100) میلادی تحت سناریوی RCP8.5 (سناریوی بدبینانه) در ایستگاه‏های کاکارضا و دهنو، بارش به‌ترتیب 39 و 36 درصد در مقیاس ماهانه و 36/30 و 35/33 درصد در مقیاس سالانه، بیشترین کاهش و دمای متوسط به‏ترتیب 5/17 و 1/17 درصد در مقیاس ماهانه و 32/9 و 06/9 درصد در مقیاس سالانه بیشترین افزایش را خواهند داشت. در نهایت، نتایج حاصل از این مطالعه نشان داد پدیدۀ تغییر اقلیم اثر زیادی بر پارامترهای بارش و دما در حوضۀ آبریز رودخانۀ هررود خواهد داشت.

کلیدواژه‌ها

موضوعات


[1]. Hafezparast M, Pourkheirolah Z. The effect of RCP scenarios on hydrological parameters, case study: Doiraj Dam catchment. Watershed Engineering and Management. 2017;10(2): 231-248. [Persian]
[2]. Hooshmand D, Khordadi MJ. Uncertainty assessment of AOGCMS and emission scenarios in climatic parameters estimation (case study in Mashhad synoptic station). J of Geography and Environmental Hazards. 2014;3(3): 77-92. [Persian]
[3]. Jahangir M, Sadati Nejad SJ, Haghighi P. Predicting of Temperature Parameters under the CanEMS2 Model (Case Study: Lar Synoptic Station). J of Extension and Development of Watershed Management. 2018; 6(22): 45-58. [Persian]
[4]. Dunning CM, Allan RP, Black E. Identification of deficiencies in seasonal rainfall simulated by CMIP5 climate models. Environmental Research Letters. 2017; 12(11):1-11.
[5]. Rowell DP. An observational constraint on CMIP5 projections of the East African Long Rains and Southern Indian Ocean warming. Geophysical Research Letters. 2019; 46(11):6050–6058.
[6]. Wainwright CM, Marsham JH, Keane RJ, Rowell DP, Finney DL, Black E, et al. Eastern African Paradox rainfall decline due to shorter not less intense Long Rains. Climate and atmospheric science. 2019; 2 (34):1-9.
[7]. Heydari STK, Hosseini SA, Heydari ATK. Investigating the effects of climate change on stream flows of Urmia Lake basin in Iran. Modeling Earth Systems and Environment. 2020; 6:329–339.
[8]. Jiang J, Zhou T, Chen X, Zhang L. Future changes in precipitation over Central Asia based on CMIP6 projections. Environmental Research Letters. 2020; 15(5):1–8.
[9]. You Q, Cai Z, Wu F, Jiang Z, Pepin N, Shen SP. Temperature dataset of CMIP6 models over China: evaluation, trend and uncertainty. Climate Dynamics. 2021; 57(1):17–35.
[10]. Akbari. M, Salimi S, Hosseini SA, Hosseini M. Spatio-temporal changes of atmospheric rivers in the Middle East and North Africa region. International Journal Climatology. 2019;39(10):3976–3986.
[11]. Almazroui M, Saeed F, Saeed S, Ismail M, Ehsan MA, Islam MN, et al. Projected changes in climate extremes using CMIP6 simulations over SREX regions. Earth Systems and Environment. 2021; 5:481–497.
 
[12]. Wilby RL, Dawson CW. SDSM4- A Decision Support Tool for the Assessment of Regional Climate Change Impacts. User Manual. 2007;1-94
[13]. Wilby RL, Dawson CW, Barrow EM. SDSM- A Decision Support Tool for the Assessment of Regional Climate Change Impacts. Journal of Environmental Modeling and Software.2002; 17(2): 145-157.
[14]. Zhu H, Jiang Z, L J, Li W, Sun C, Li L. Does CMIP6 inspire more confidence in simulating climate extremes over China?.Advances in Atmospheric Sciences. 2020; 37:1119–1132.
[15]. Luo N, Guo Y, Gao Z, Chen K, Chou J. Assessment of CMIP6 and CMIP5 model performance for extreme temperature in China. Atmospheric and Oceanic Science Letters.2020; 13(6):589–597.
[16]. Yue Y, Yan D, Yue Q, Ji G, Wang. Z. Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs, Atmospheric Research.2021; 264:251-264.
[17]. Qin J, Su B, Tao H, Wang Y, Huang j, Jiang T. Projection of temperature and precipitation under SSPs-RCPs Scenarios over northwest China. Frontiers of Earth Science. 2021; 15:23–37.
[18]. Donat GM, Lowry LA, Alexander VL, O’Gorman AP, Maher N. More extreme precipitation in the world’s dry and wet regions. Nature and Climate change. 2016; 6: 508–513.
[19]. Amirabadizadeh M, Ghazali AH, Huang YF, Wayayok A. Downscaling daily precipitation and temperatures over the Langat River Basin in Malaysia: A comparison of two statistical downscaling approaches. International Journal of Water Resources and Environmental Engineering.2016; 8: 120–136.
[20]. Gebrechorkos SH, Hülsmann S, Bernhofer C. Statistically downscaled climate dataset for East Africa. Scientific data. 2019; 6(31): 1-8.
[21]. Kazemi DH. Rasul G, Li J. Cheema SB. Comparative Study for ECHAM5 and SDSM in Downscaling Temperature for a Geo-Climatically Diversified Region, Pakistan. Applied Mathematics. 2014; 5(1): 137-143.
[22]. Roshani A, Hamadi M. Forecasting the effects of climate change scenarios on temperature & precipitation based on CMIP6 models (Case study: Sari station). Journal of Water and Irrigation Management. 2022; 11(4): 669-986. [Persian] 
[23]. Mortazavifard. S.M, Mobin. M.H, Mokhtari. M. H, Ekrami. M. 2019. Evaluation of the impact of climate change on precipitation and temperature variables based on the RCP scenarios: A case study of the east of Mazandaran Province, Iran. Journal of meteorology and atmospheric scinence.2019;1(4): 351-364.
[24]. Chen H, YuXu C, Guo S. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. Journal of Hydrology.2012; 434(435):36–45.
[25]. Ramadas M, Shaik R, Mujumdar PP. Assessment of hydrologic impacts of climate change in Tunga– Bhadra river basin, India with HEC-HMS and SDSM. Hydrological Processes.2012;27(11): 1572-1589.
[26]. Sobhani B, Eslahi M, Babaeian I. Efficiency of Statistical Downscaling Models of SDSM and LARS-WG in the Simulation of Meteorological Parameters in Lake Urmia Basin. Physical Geography Research Quarterly. 2016; 47(4): 499-516. [Persian]
[27]. Goudarzi M, Salahi B, Hosseini SA. Performance Assessment of LARS-WG and SDSM Downscaling Models in Simulation of Climate Changes in Urmia Lake Basin. Iranian journal of watershed management science.2015;9(31): 11-23. [Persian]
[28]. Zehtabian GR, Salajegheh A, Malekian A, Boroomand N, Azareh A. Evaluation and comparison of performance of SDSM and CLIMGEN models in simulation of climatic variables in Qazvin plain. Desert Journal 2016;21(2): 155-164.
[29]. Aref MR, Alijani. B. Investigation of temperature and precipitation variations of Yazd-Ardakan basin with SDSM under the conditions of future climate change. Journal of Arid Biome.2018;8(1): 89-101 [Persian].
[30]. Javaherian M, Ebrahimi H, Aminnejad B. Prediction of changes in climatic parameters using CanESM2 model based on RCP scenarios (case study): Lar dam basin. Ain Shams Engineering Journal.2020; 12(1):445-454.
دوره 9، شماره 3
مهر 1401
صفحه 657-673
  • تاریخ دریافت: 11 فروردین 1401
  • تاریخ بازنگری: 10 اردیبهشت 1401
  • تاریخ پذیرش: 09 تیر 1401
  • تاریخ اولین انتشار: 01 مهر 1401
  • تاریخ انتشار: 01 مهر 1401