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Drought is one of the destructive phenomena with adverse impacts on water resources and 
water needs. Machine-learning models are among the helpful tools in time-series prediction 
that can provide suitable results without the requirements for basic information about a 
system. In this study, adaptive neuro-fuzzy inference system (ANFIS) and least square 
support vector regression (LSSVR) models were utilized to predict the standardized 
precipitation index (SPI) as a meteorological drought indicator and streamflow drought index 
(SDI) as a hydrological drought indicator for a period (2001-2019). Ajabshir, located in the 
northwest of Iran, was selected as the study area, where the data of Qaleh Chay 
meteorological and hydrological stations were used to calculate SPI and SDI, respectively. 
The precipitation and flow rate data were considered input variables of the machine-learning 
models in predicting the SPI and SDI, respectively. The results revealed that during the period 
under review, meteorological drought was more severe in 2004-2011. While in this period, 
hydrological drought was more severe in 2007-2011 (SPI<-3). Moreover, the prediction 
results of the indices showed that the performance of the LSSVR model was better than that 
of ANFIS for both indicators. Using LSSVR, the RMSE and MAPE error evaluation criteria 
for SPI were 0.74 and 0.59, respectively, while these values for SDI were obtained as 0.62 
and 0.46, respectively. The findings of this study show that machine-learning models are 
suitable tools for predicting drought indicators. Therefore, it is suggested to use such models 
in predicting drought indicators in other similar regions.
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