Simulation of Rainfall-Runoff Process using multilayer perceptron and Adaptive Neuro-Fuzzy Interface System and multiple regression (Case Study: Khorramabd Watershed)

Document Type : Research Article

Authors

1 Department of Range and Watershed Management Engineering, Lorestan University, Khorramabad, Iran

2 MSc Student in Watershed Management Engineering, Department of Range and Watershed Management Engineering, Lorestan University, Khorramabad, Iran

Abstract

The discharge or runoff which ousts from a watershed is important. Because its deficiency leads to financial losses and its excesses cause damage in lives and property as flood. In this research using Artificial Neural Network Multi-layer Perceptron (MLP (and Adaptive Neuro-fuzzy interface system (ANFIS) and multiple regression method simulated rainfall- runoff process on daily basis in the Khorramabad watershed. For inputs, different combinations of precipitation inputs including current rainfall, pervious day rainfall and two previous days were used. Inputs membership function for ANFIS model in this research is: the trapezoid, triangular, Gaussian and Gaussian type 2. MLP model that used in this research, was evaluated with one hidden layer and the number of variables neurons. The results showed that Adaptive Neuro-fuzzy interface system (ANFIS) compared to multi-layer perceptron model (MLP) and multiple regression model, has better performance. Also by increasing in the number of inputs, involvement pervious day rainfall and two previous days, all three models performance will be better.

Keywords

Main Subjects


[1].        فتح‌آبادی ابوالحسن، 1387، پیش‌بینی دبی رودخانه با استفاده از روش­های نوروفازی و مدل­های سری­های زمانی، علوم و مهندسی آبخیزداری ایران، سال دوم، شمارۀ 5:  30-21.
[2].        هنر تورج، ترازکار محمد حسن، و طرازکار محمدرضا، 1389، برآورد ضریب دبی سرریزهای جانبی با استفاده از سیستم استنتاج فازی– عصبی (ANFIS)، پژوهش­های حفاظت آب و خاک، جلد هفدهم، شمارۀ 2: 176-169.
[3].       عراقی‌نژاد، شهاب؛ کارآموز، محمد، 1384، پیش‌بینی بلند‌مدت رواناب با استفاده از شبکه‌های عصبی مصنوعی و سیستم استنتاج فازی، تحقیقات منابع آب ایران، جلد 1، شمارۀ 2: 100-88.
[4].       نورانی، وحید؛ کی­نژاد، محمدعلی؛ ملکانی، لیلا، 1388، استفاده از سیستم فازی- عصبی تطبیقی در مدلسازی بارش- رواناب، نشریۀ مهندسی عمران و محیط زیست، جلد 39، شمارۀ 4: 81-75
[5].              نبی­زاده، مرتضی؛ مساعدی، ابوالفضل؛ حسام، موسی؛ دهقانی امیراحمد، 1391، مقایسۀ عملکرد مدل­های مبتنی بر منطق فازی در پیش‌بینی آبدهی روزانه رودخانة لیقوان، مجلۀ پژوهش­های حفاظت آب و خاک، جلد 19، شمارۀ 1: 134-117.
[6].       زارع ابیانه، حمید؛ بیات ورکشی، مریم؛ 1390، ارزیابی مدل­های هوشمند عصبی و تجربی در تخمین رواناب سالانه، نشریۀ آب و خاک (علوم و صنایع کشاورزی)، جلد 25، شمارۀ 2: 379-365.
[7].       احمدزاده قره گویز، کاوه؛ میرلطیفی، سید مجید؛ محمدی، کوروش، 1389، مقایسه سیستم های هوش مصنوعی (ANFIS و ANN) در تخمین میزان تبخیر و تعرق گیاه مرجع در مناطق بسیار خشک ایران، نشریۀ آب و خاک، جلد 26، شمارۀ 4: 689-679.
 
[8].              سماعی رشتی­زند، 1386، بارش‌های مولد سیل در حوضة آبخیز خرم‌آباد، پایان‌نامۀ کارشناسی ارشد، دانشگاه آزاد اسلامی، واحد خرم‌آباد: 102.
[9]. Kurtulus, B. and M. Razack, 2010. Modeling daily discharge responses of a large karstic aquifer using soft computing methods: artificial neural network and neurofuzzy. Journal of Hydrology, 381: 101-111.
[10].            Conrads, P.A., et al, 1999, Comparing physics–based and neural network models for simulating salinity, temperature and dissolved oxygen in a complex, tidally affected river basin proceeding of the South Carolina environmental conference, South Carolina, Unites state.
[11].            Rajurkar, M.P., U.C. Kothyari and U.C. Chube. 2004. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology, 285(4): 96-113.
[12].            Firat, M. and M. Gungor. 2007. River flow estimation using adaptive neuro-fuzzy inference system. Mathematics and Computers in Simulation, 75(3-4): 87-96.
[13].            Dorum, A., Yarar, A., Faik Sevimli, M and Onüçyildiz, M., 2010. Modelling the rainfall–runoff data of Susurluk basin, Expert Systems with applications, 37(9): 6587-6593.
[14].            Kisi, O., Shiri and J., Tombul, M., 2012. Modeling rainfall-runoff process using soft computing techniques, Computers & Geosciences, 51: 108-117.
[15].            Bhatia, N., Sharma, L., Srivastava, S., Katyal, N., Srivastav, R., 2013. Streamflow Decomposition Based Integrated ANN Model, Open Journal of Modern Hydrology, 3: 15-19.
[16].            Vafakhah, M., 2012. Application of artificial neural networks and adaptive neuro-fuzzy inference system models to short-term stream flow forecasting, Canadian Journal of Civil Engineering, 39(4): 402-414.
[17].            Jang, J. S. R., Sun, C. T. and Mizutani, E. 1997. "Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence".
 
 
  • Receive Date: 20 February 2015
  • Revise Date: 19 March 2015
  • Accept Date: 22 May 2015
  • First Publish Date: 22 June 2015
  • Publish Date: 22 June 2015