Evaluate the Stability of Surface Water Quality Variation in Gorganrood River Basin

Document Type : Research Article

Authors

1 Range and Management department, Gonbad-e-Kavouse University, Gonbad, Iran

2 Rangeland Management Department, Tarbiat Modares University, Noor, Iran

3 Statistical Department, Gonbad-e-Kavouse University, Gonbad, Iran

Abstract

Information on water quality and pollution sources is important for the implementation of sustainable water resource management strategies. In this research, to evaluate spatial variation and the interpretation of large complex water quality data taken at seven different sites along the Gorganrood River were subjected to multivariate statistical analysis. The factor analysis generated two significant factors, which explained 97.80% of the variance in data sets. Factor 1 and factor 2 explained 86.27 and 15.76% of the total variance in water quality data sets. Principle components analysis results revealed that surface water quality was mainly controlled by Ca and pH parameters. In next step, information entropy theory applied to interpret the stability of surface water quality variation in each factors and each parameters. Overall results revealed instability in data recorded in Tamar and Galikesh sites and in factor 2, EC and TDS, Lazoreh has highest instability. With a well knowing the factor score and overlaying entropy, infactor1, Mg and Cl had highest stability. The ranks of information entropy values for Mg parameter at Galikesh, Tagi Abad, Basir Abad, Ramian and Tangrah sites vary noticeably due to geological formation. In general, sampling uncertainties are highly site specific.

Main Subjects


  1. خزایی موغانی، سولماز؛ نجفی‌نژاد، علی؛ محسنی، عظیم؛ شیخ، واحدبردی،1392، ﺗﻐﯿﯿﺮات ﻣﮑﺎﻧﯽ و ﻓﺼﻠﯽ رﺳﻮب ﻣﻌﻠﻖ دراﯾﺴﺘﮕﺎهﻫﺎی واﻗﻊدرﻃﻮل رودﺧﺎﻧﻪ ﮔﺮﮔﺎﻧﺮود، اﺳﺘﺎنﮔﻠﺴﺘﺎن، پژوهشنامۀ مدیریت حوضۀ آبخیز، سال چهارم، شمارۀ 7: 15-1.
  2. زارع گاریزی، آرش؛ سعدالدین، امیر، شیخ، واحد بردی؛ سلمان ماهینی، عبدلرسول،1391، بررسی روند تغییرات بلندمدت متغیرهای کیفیت آب رودخانۀ چهل‌چای (استان گلستان)، مجلۀ پژوهش آب ایران، سال ششم، شمارۀ 10: 165-155.
  3. سید خادمی، مرتضی، 1379، پایش نیترات و بررسی نسبت کلرید به نیترات در آبهای زیرزمینی شهر گرگان، مجموعه مقالات چهارمین کارگاه آموزشی، تخصصی پایش کیفی منابع آب، شیراز.
  4. شیرازی، محمد رضا، 1379. پایش کیفی منابع آب تهران، مجموعه مقالات چهارمین کارگاه آموزشی، تخصصی پایش کیفی منابع آب، شیراز ، ایران.
  5. کبودوندپور، شهرام، 1373، اثرات فاضلاب‌های شهری و صنعتی بر کیفیت رودخانۀ قشلاق سنندج، کارشناسی ارشد، دانشگاه تربیت مدرس نور.
  6. کلانتری، نصرا..؛ رحیمی، محمد حسین؛ اکبری، اکبر، 1388، بررسی هیدروشیمیایی دشت میان آب با استفاده از روش‌های آماری، نمودارهای هیدروشیمیایی و منطق فازی. فصلنامۀ زمین‌شناسی ایران، سال سوم، شمارۀ نهم: 15-25.
  7. معاونت برنامه‌ریزی و نظارت راهبردی رییس جمهور ،1390، گزارش اقتصادی اجتماعی استان گلستان: 396.
  8. معاونت برنامه‌ریزی و نظارت راهبردی رییس جمهور، 1388، راهنمای پایش کیفیت آب سطحی، نشریۀ شمارۀ 522: 203.
    1. Chatfield, C. and A. J. Collin, 1980, Introduction to Multivariate Analysis. Published in the USA by Chapman and Hall, New York NY.
    2. Fetter, C. W., 1990, Applied hydrogeology, 3rd Ed., MacMillan Pub, 592 p.
    3. GÜler, C., G.D. Thyne, J. E. Mc Cary, and K. A. Turner, 2002, Evaluation of graphical and multivariate statistical methods for classification of water chemistry data, Hydrogeology Journal, vol. 10, pp.455-474.
    4. Helena, B., R. Pardo, M. Vega, E. Barrado, J. M. Fernandez, and L. Fernandez, 2000, Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) byprincipal component analysis, Water Research, vol 34 (3), pp. 807–816.
    5. Jollife, I. T., 1986, Principal component analysis, Second Ed., Springer, 271. Pages.
    6. Karpuzcu, M., S. Senes, and A.  Akkoyunlu, 1987, Design of monitoring systems for water quality by principal component analysis and a case study. Proceedings of the International Symposium on Environmental Management (Environment 87), vol1, 673-690, Istanbul.
    7. Liu, C. W., C. S. Jang, C. P. Chen, C. N. Lin, and K. L. Lou, 2008, Characterization of groundwater quality in Kinmen Island using multivariate analysis and geochemical modeling, Hydrological Processes, vol 22 (3), pp. 376-383.
    8. Love, D., D. Hallbauer, A. Amos, and R. Hranova, 2004, Factor analysis as a tool in groundwater quality management: Two southern African case studies, Physics and Chemistry of the Earth, vol 29(15-18), pp. 1135-1143.
    9. Mogheir, Y., V. P.  Singh, and J. L. M. P. Lim, 2006, Spatial assessment and redesign of groundwater quality monitoring network entropy theory, Gaza Strip, Palestine, Hydrogeology Journal, vol 14, pp. 700-712.
    10. Paliwal, R., P. Sharma, and A. Kansal, 2007, Water quality modeling of the river Yamuna (India) using QUAL2E-UNCAS, Journal of Environmental Management, vol 83, pp.131–144
    11. Rango, G., M. De Luca, and G. Loele, 2007, An Application of Cluster Analysis and Multivariate Classification Methods to Spring Water Monitoring Data, Micro Chemical Journal, vol 87, pp. 19-127.
    12. Ryberg, K. R., 2006, Cluster analysis of  water-quality data for Lake Sakakawea, Audubon Lake, and Mc Clusky Canal, Central North Dakota, 1990-2003: U.S. Geological Survey Scientific Investigations Report 2006-5202, 38 P.
    13. Satyanarayana M. and P. Periakali, 2003, Geochemistry of ground water in ultra basic peninsular gneissic rocks, Salem district, Tamil Nadu, Journal of the Geological Society of India, vol 62, pp. 63–73.
    14. Shannon, C. E., 1948, A mathematical theory of communication, Bell Syst. Tech. J., vol 27, pp. 379-423.
    15. Singh, K. P., A. Malik, D. Mohan, and S. Sinha, 2004, Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River, India, Water Research, vol 38, pp. 3980–3992.
    16. Singh, V. P., 1997, The use of entropy in hydrology and water resources, Hydrological Processes,  vol 11, pp. 587-626
    17. Wang, Y. and Z. Luo Tma, 2001, Geostatistical and geochemical analysis of surface water leakage into ground water on a regional scale: A case study in the Liulin karst system, northwestern China, Journal of Hydrology, vol 246, pp. 223–234.
    18. Wunderlin, D.A., M. Diaz, M. M. V., Ame, S. F. Pesce, A. C. Hued, and M. Bistoni, 2001, Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia river basin (Cordoba-Artgentina), Water Research, vol 35 (12), pp. 2881–2894.
    19. Yidand, S., M. D. Ophori, and B. Banoeng-Yakubo, 2008, A Multivariate Statistical Analysis of Surface Water Chemistry Data- the Ankobra Basin, Ghana, Journal of Environmental Management, vol. 86, pp.80-87.
    20. Yuan, Y., and J. K. Mitchell, 1999, A Method to Evaluate Pollutant Loads from Tile Drains. Transactions of the American Society of Agricultural Engineers, vol 42(5), pp. 1313-1319.
    21. Zhang J, W. W. Huang, R. Letolle, and C. Jusserand, 1995, Major element chemistry of the Huanghe (Yellow River), China – Weathering processes and chemical fluxes, Journal of hydrology, vol 168, pp. 173–203.