Monitoring Land Subsidence Patterns in Southwestern Tehran Using Radar Interferometry Time Series and Global Positioning System Observations

Document Type : Research Article

Authors

1 Department of Construction Engineering, École de technologie supérieure ÉTS, 1100 Notre-Dame St W, Montreal, Quebec, H3C 1K3, Canada

2 Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran.

3 Ph.D. in Geophysics Department of Earth Sciences Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran

10.22059/ije.2025.397729.1875

Abstract

Research Topic: This study investigates land subsidence trends in the southwestern region of Tehran, Iran, where overextraction of groundwater combined with prolonged drought has triggered severe and accelerating ground deformation. Given the critical implications for infrastructure stability and water resource sustainability, this research aims to analyze the spatial and temporal patterns of subsidence in this area using advanced geodetic techniques.
Objective: This study investigates the rate and trend of land subsidence in the southwest of Tehran Province during the years 2014 to 2017. The main objective is to analyze ground surface changes and to examine the impacts of excessive groundwater extraction in this region, which has become one of the most critical plains in the country.
Method: A time-series analysis was conducted using Sentinel-1A Synthetic Aperture Radar (SAR) data processed with the Small Baseline Subset (SBAS) InSAR technique for the period from October 2014 to March 2017. To validate the InSAR-derived displacement results, GNSS data from the Varamin station were used. The analysis focused on vertical ground movements to quantify the rate and extent of subsidence in the study area.
Results: The findings reveal that the maximum subsidence rate reached 174 mm/year along the satellite’s line of sight, corresponding to 227 mm/year in the vertical direction. The GNSS data confirmed the reliability of the InSAR results, despite minor spatial scale differences between the two datasets. The most severe subsidence was recorded in the Shahriar and Eslamshahr regions, where uncontrolled groundwater extraction has led to critical ground deformations threatening urban infrastructures, roads, and pipelines. The observed subsidence pattern correlates strongly with the spatial distribution of groundwater pumping wells and agricultural water consumption, exacerbated by consecutive drought periods.
Conclusions: This study highlights the alarming rate of land subsidence in southwestern Tehran and underscores the urgent need for continuous geodetic monitoring combined with groundwater management strategies. Without effective intervention, the ongoing depletion of aquifers will likely lead to irreversible ground deformation and significant socio-economic and environmental risks. The integration of InSAR time-series analysis with ground-based GNSS observations provides a robust framework for assessing and mitigating land subsidence hazards in vulnerable urban and peri-urban areas.

Keywords

Main Subjects


Alipour, S., Motgah, M., Sharifi, M., & Walter, T. (2008). InSAR time series investigation of land subsidence due to groundwater overexploitation in Tehran, Iran. Paper presented at the Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas, 2008. USEReST 2008. Second Workshop on.
Altamimi, Z., Rebischung, P., Métivier, L.,& Collilieux, X. (2016), ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, J. Geophys. Res. Solid Earth, 121, 6109–6131, doi:10.1002/2016JB013098.
Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A., & Laczniak, R. J. (1999). Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology, 27(6), 483-486.
Amighpay, M., Arabi, S., Talebi, A., & Djamour, Y. (2006). Elevation changes of the precise leveling tracks in the Iran leveling network. Scientifc report published in National Cartographic Center (NCC) of Iran.
Arabi, S., Montazerian, A. R., Maleki, E., & Talebi, A. (2005). Study of land subsidence in south-west of Tehran. Journal of Engineering and Surveying, 69, 14-24.
Ashraf, S., Nazemi, A., & AghaKouchak, A. (2021). Anthropogenic drought dominates groundwater depletion in Iran. Scientific Reports, 11(1), 9135.
Aswathi, J., Kumar, R. B. B., Oommen, T., Bouali, E. H., & Sajinkumar, K. S. (2022). InSAR as a tool for monitoring hydropower projects: A review. Energy Geoscience, 3(2), 160-171.
Barcelonnette. (2013). Traditional Differential Interferometry Synthetic-Aperture Radar.
Bekaert, D., Walters, R., Wright, T., Hooper, A., & Parker, D. (2015). Statistical comparison of InSAR tropospheric correction techniques. Remote Sensing of Environment, 170, 40-47.
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375-2383.
Crosetto, M., Tscherning, C. C., Crippa, B., & Castillo, M. (2002). Subsidence monitoring using SAR interferometry: reduction of the atmospheric effects using stochastic filtering. Geophysical Research Letters, 29(9).
Davis, J., Herring, T., Shapiro, I., Rogers, A., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Science, 20(6), 1593-1607.
Dehghani, M., Zoej, M. J. V., Hooper, A., Hanssen, R. F., Entezam, I., & Saatchi, S. (2013). Hybrid conventional and Persistent Scatterer SAR interferometry for land subsidence monitoring in the Tehran Basin, Iran. ISPRS journal of photogrammetry and remote sensing, 79, 157-170.
Ding, X.-l., Li, Z.-w., Zhu, J.-j., Feng, G.-c., & Long, J.-p. (2008). Atmospheric effects on InSAR measurements and their mitigation. Sensors, 8(9), 5426-5448.
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20.
Forootan, E., Rietbroek, R., Kusche, J., Awange, J. L., Schmidt, M., Omondi, P., & Famiglietti, J. (2014). Separation of large scale water storage patterns over Iran using GRACE, altimetry and hydrological data. Remote Sensing of Environment, 140, 580–595.
Fruneau, B., & Sarti, F. (2000). Detection of ground subsidence in the city of Paris using radar interferometry: isolation of deformation from atmospheric artifacts using correlation. Geophysical Research Letters, 27(24), 3981-3984.
Galloway, D. L., Hudnut, K. W., Ingebritsen, S., Phillips, S. P., Peltzer, G., Rogez, F., & Rosen, P. (1998). Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resources Research, 34(10), 2573-2585.
Geological Survey of Iran. (2008a). Investigation of subsidence hazards in Tehran Province: Hydrogeology of the land subsidence area in the southwest of Tehran Plain and groundwater balance.
Haghshenas Haghighi, M., & Motagh, M. (2019). Ground surface response to continuous compaction of aquifer system in Tehran, Iran: Results from a long-term multi-sensor InSAR analysis. Remote Sensing of Environment, 221, 534–550.
Hanssen, R. F. (2001). Radar interferometry: data interpretation and error analysis (Vol. 2): Springer Science & Business Media.
Herbert, C., & Döll, P. (2019). Global assessment of current and future groundwater stress with a focus on transboundary aquifers. Water Resources Research, 55(6), 4760–4784.
Herrera-García, G., Ezquerro, P., Tomás, R., Béjar-Pizarro, M., López-Vinielles, J., Rossi, M., Mateos, R. M., Carreón-Freyre, D., Lambert, J., Teatini, P., Cabral-Cano, E., Erkens, G., Galloway, D., Hung, W.-C., Kakar, N., Sneed, M., Tosi, L., Wang, S., & Ye, S. (2021). Mapping the global threat of land subsidence. Science, 371(6524), 34–36.
Herring, T. A., Melbourne, T. I., Murray, M. H., Floyd, M. A., Szeliga, W. M., King, R. W., Phillips, D. A., Puskas, C. M., Santillan, M., & Wang, L. (2016), Plate Boundary Observatory and related networks: GPS data analysis methods and geodetic products, Rev. Geophys., 54, 759–808, doi:10.1002/ 2016RG000529
Hooper, A. J. (2006). Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation.
Jaleh, B., & Eslamipanah, M. (2023). Restore Iran’s declining groundwater. Science, 379(6628), 148–148.
Kampes, B. (2005). Radar interferometry: Persistent scatterer technique.
Khaki, M., Forootan, E., Kuhn, M., Awange, J., Van Dijk, A. I. J. M., Schumacher, M., & Sharifi, M. A. (2018). Determining water storage depletion within Iran by assimilating GRACE data into the W3RA hydrological model. Advances in Water Resources, 114, 1–18.
Madani, K., AghaKouchak, A., & Mirchi, A. (2016). Iran’s socio-economic drought: Challenges of a water-bankrupt nation. Iranian Studies, 49(6), 997–1016.
Maghsoudi, Y., & Mahdavi, S. (2015). Fundamentals of radar remote sensing. Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology.
Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth's surface. Reviews of geophysics, 36(4), 441-500.
Motagh, M., Djamour, Y., Walter, T. R., Wetzel, H.-U., Zschau, J., & Arabi, S. (2007). Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, levelling and GPS. Geophysical Journal International, 168(2), 518-526.
Motagh, M., Shamshir, R., Haghshenas Haghighi, M., Wetzel, H.-U., Akbari, B., Nahavandchi, H., Roessner, S., & Arabi, S. (2017). Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements. Engineering Geology, 218, 134–151.
Negahdary, M. (2022). Shrinking aquifers and land subsidence in Iran. Science, 376(6595), 1279–1279.
Peltzer, G., Rosen, P., Rogez, F., & Hudnut, K. (1998). Poroelastic rebound along the Landers 1992 earthquake surface rupture. Journal of geophysical research: solid earth, 103(B12), 30131-30145.
Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., & Lo, M.-H. (2018). Emerging trends in global freshwater availability. Nature, 557(7707), 651–659.
Sabeti, H., Pourmina, A., Rezaei, A. et al. Discovering confined zones and land deformation characteristics across an aquifer system in Iran using GNSS and InSAR techniques. Hydrogeol J 31, 2061–2076 (2023). https://doi.org/10.1007/s10040-023-02704-8
Sadeghi, Z., Veldan-Zoj, M. J., & Dehghani, M. (2011). Integration of two different radar interferometry methods based on permanent scatterers for monitoring land subsidence. Journal of Earth Sciences, 90, 45–58.
Saemian, P., Tourian, M. J., AghaKouchak, A., Madani, K., & Sneeuw, N. (2022). How much water did Iran lose over the last two decades? Journal of Hydrology: Regional Studies, 41, 101095.
Sandwell, D., Mellors, R., Tong, X., Wei, M., & Wessel, P. (2011). Gmtsar: An insar processing system based on generic mapping tools.
Shemshaki, A., Blourchi, M. J., & Ansari, F. (2005). Earth subsidence review at Tehran plain-Shahriar (first report).
Smith, R. G., Knight, R., Chen, J., Reeves, J. A., Zebker, H. A., Farr, T., & Liu, Z. (2017). Estimating the permanent loss of groundwater storage in the southern San Joaquin Valley, California. Water Resources Research, 53(3), 2133–2148.
Tayfehrostami, A. and Amerian, Y. (2025). Analysis of Tropospheric Precipitable Water Vapor Variations Using GNSS Radio Occultation Data and Radiosonde Observations (Case Study: Iran). Journal of the Earth and Space Physics51(2), 499-516. doi: 10.22059/jesphys.2025.396147.1007694
Tesauro, M., Berardino, P., Lanari, R., Sansosti, E., Fornaro, G., & Franceschetti, G. (2000). Urban subsidence inside the city of Napoli (Italy) observed by satellite radar interferometry. Geophysical Research Letters, 27(13), 1961-1964.
Wada, Y., Van Beek, L. P. H., & Bierkens, M. F. P. (2012). Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resources Research, 48, W00L06.
Yousefi, M. (2017). Evaluation of the capability of numerical weather prediction models and tomography models in reducing tropospheric error of radar interferometry observations (Master’s thesis). Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Iran.
Yun, Y., Zeng, Q., Green, B. W., & Zhang, F. (2015). Mitigating atmospheric effects in InSAR measurements through high-resolution data assimilation and numerical simulations with a weather prediction model. International Journal of Remote Sensing, 36(8), 2129-2147.

Articles in Press, Accepted Manuscript
Available Online from 23 September 2025
  • Receive Date: 09 July 2025
  • Revise Date: 22 August 2025
  • Accept Date: 13 September 2025
  • First Publish Date: 13 September 2025
  • Publish Date: 23 September 2025