Validation of Global Climate Models (GCMS) Temperature and Rainfall Simulation in Kermanshah, Ravansar and West Islamabad Stations

Document Type : Research Article

Authors

1 MSc Student in Watershed Management and Engineering, Department of Range and Watershed Management Engineering, Lorestan University, Lorestan, Iran

2 Department of Range and Watershed Management Engineering, Lorestan University, Lorestan, Iran

Abstract

The objective of this study was to evaluate the ability of ten GCMs and three Emission Scenarios to reproduce the rainfall and temperature parameters in Kermanshah, Ravansar and West Islamabad stations located inside Qaresou basin in Iran using the average weighting method, over 1989-2008 period. At first, the models output and the scenarios were provided for this period. Then, the models validation was carried out using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Model Bias, and Nash – Sutcliffe criteria. Moreover, the models and scenarios uncertainty analysis was assessed by the weighting method. Based on these criteria, HADGEM1 and BCM2 had the best efficiency in Kermanshah station for mean temperature and rainfall simulation respectively. For Ravansar station the best models were ECHO-G and HADCM3, while for West Islamabad was ECHO-G. The overall results of this analysis showed that the best applied GCMs and emission scenarios for simulation of temperature and rainfall in the study area are ECHO-G (A2) and HADCM3 (A1B), respectively. The results also indicated that these models and scenarios performance for simulation of temperature and rainfall are varied and thus a GCM need to be calibrated for different regions.

Keywords

Main Subjects


1- اشرف، بتول؛ علیزاده، امین؛ موسوی بایگی، محمد؛ بنایان اول، محمد، 1393، صحت‌سنجی داده‌های دما و بارش شبیه‌سازی شده توسط اجرای منفرد و گروهی پنج مدل AOGCM برای منطقۀ شمال شرق ایران، نشریۀ آب و خاک، جلد 28، شمارۀ 2: 266-253.
2-  آشفته، پریسا سادات؛ مساح بوانی، علیرضا، 1391، بررسی تأثیر عدم‌قطعیت مدل‌های چرخۀ عمومی جو و اقیانوس (AOGCM) و سناریو­های انتشار گاز­هایگلخانه‌ای بر رواناب حوضۀ تحت تأثیر تغییر اقلیم، مجلۀ تحقیقات منابع آب ایران، سال هشتم، شمارۀ 2.
3- مساح بوانی، علیرضا؛ مرید، سعید؛ محمدزاده، محسن، 1389، مقایسه روش­های کوچک‌ مقیاس کردن و مدل‌های AOGCM در بررسی تأثیر تغییر اقلیم در مقیاس منطقه­ای، مجلة فیزیک زمین و فضا، دورۀ 36، شمارۀ 4: 110-99.
4-  کمال، علیرضا؛ مساح بوانی، علیرضا، 1390، ارزیابی عدم‌قطعیت مدل‌هایAOGCM-AR4و مدل‌های هیدرولوژی در تخمین دما، بارش و رواناب حوضۀ قره‌سو تحت تأثیر تغییر اقلیم، مجلة پژوهش آب ایران، سال پنجم، شمارۀ نهم: 50-39.
5-  جاهد، رضا؛ جلال کمالی؛ نوید؛ بابازاده، حسین، 1390، مجلۀ مهندسی منابع آب، سال چهارم: 64-51.
6-     Christensen, N., Wood, A.W., Voisin, N., Lettenmaier, D.P., and Palmer, R. N., 2004, The effects of climate change on the hydrology and water resources of the Colorado River basin, Climatic Change, Volume 62, Issue 1-3, pp 337-363.
7-     Department of Water Resources (DWR), 2006, Progress on incorporating Climate Change into Planning and Management of California’s Water Resources, Technical Memorandum Report, State of California.
8-     Feng, J.M., WANG, Y.Li., and Fu, C.B, 2012, A multi-ensemble of regional climate simulation from RMIP for Asia. Report of key laboratory of regional climate-environment for East Asia, START regional center for temperature East Asia, IAP, CAS, pages 1-38.
9-     Fowler, H. J., and Ekstrom, M., 2009, Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes. International Journal of Climatology, Volume 29, Issue 3, pages 385–416.
12- IPCC, Robert, T., Watson, R.T., Zinyowera, M.C., Moss, R.H. (Eds.), 1995, Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses, Cambridge University Press, UK p, 878.
13- IPCC, Watson, R.T., Zinyowera, M.C., Moss, R.H., Dokken, D.J., (Eds.), 2001, Special Report on the Regional Impacts of Climate Change, An Assessment of Vulnerability,Cambridge University Press, UK.
14- IPCC, Solomon, S., D. Qin, M., Manning, Z., Chen, M., Marquis, K.B., Averyt, M., Tignor and H.L., Miller (eds.), 2007, Summary for Policy makers, in: Climate Change, Cambridge University Press, Cambridge, PP 1-18.
15- IPCC, 2010, Meeting Report IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections, National Center for Atmospheric Research, Boulder Colorado, USA, pp 115.
16- Masanganise, J., Chipindu, B., Mhizha, T., Mashonjowa, E., Basira, K., 2013, An evaluation of the performances of Global Climate Models for predicting temperature and rainfall in Zimbabwe, International Journal of Scientific and Research Publications, (3)8:2250-3153.
17- Maurer E. P., 2007, Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenario, Climatic Change 82: pp 309–325.
18- Muttiah, R.S., and Wurbs, R.A., 2009, Modeling the impacts of climate change on water supply reliabilities, Water International, 27(3), pp 407-419.
19- New, M., and Hulme, M., 2000, Representing uncertainty in climate change scenarios: a Monte-Carlo approach, Integrated Assessment 1, pp 203–213.
20- Radic, V., and Clarke, G.K.C., 2011, Evaluation of IPCC Models’ Performance in Simulating Late-Twentieth-Century Climatologies and Weather Patterns over North America, Journal of climate, Vol. 24, pp 5257-5274.
21-   Su, F., Duan, X., Chen, D., Hao, Z. and Cui, L., 2013, Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau, Journal of climate, Volume 26, pp 3187-3208.
22- Wilby, R., and Harris, I., 2006, A framework for assessing uncertainties in climate change impacts: low flow scenarios for the RiverThames, UK, Water Resources Research, Volume 42 Issue 2.
23- Xu, C.-y., 1999, From GCMs to river flow: a review of downscaling methods and hydrologic modeling approaches, Progress in Physical Geography, Volume 232, pp 229–249.