[1]. فتحآبادی ابوالحسن، 1387، پیشبینی دبی رودخانه با استفاده از روشهای نوروفازی و مدلهای سریهای زمانی، علوم و مهندسی آبخیزداری ایران، سال دوم، شمارۀ 5: 30-21.
[2]. هنر تورج، ترازکار محمد حسن، و طرازکار محمدرضا، 1389، برآورد ضریب دبی سرریزهای جانبی با استفاده از سیستم استنتاج فازی– عصبی (ANFIS)، پژوهشهای حفاظت آب و خاک، جلد هفدهم، شمارۀ 2: 176-169.
[3]. عراقینژاد، شهاب؛ کارآموز، محمد، 1384، پیشبینی بلندمدت رواناب با استفاده از شبکههای عصبی مصنوعی و سیستم استنتاج فازی، تحقیقات منابع آب ایران، جلد 1، شمارۀ 2: 100-88.
[4]. نورانی، وحید؛ کینژاد، محمدعلی؛ ملکانی، لیلا، 1388، استفاده از سیستم فازی- عصبی تطبیقی در مدلسازی بارش- رواناب، نشریۀ مهندسی عمران و محیط زیست، جلد 39، شمارۀ 4: 81-75
[5]. نبیزاده، مرتضی؛ مساعدی، ابوالفضل؛ حسام، موسی؛ دهقانی امیراحمد، 1391، مقایسۀ عملکرد مدلهای مبتنی بر منطق فازی در پیشبینی آبدهی روزانه رودخانة لیقوان، مجلۀ پژوهشهای حفاظت آب و خاک، جلد 19، شمارۀ 1: 134-117.
[6]. زارع ابیانه، حمید؛ بیات ورکشی، مریم؛ 1390، ارزیابی مدلهای هوشمند عصبی و تجربی در تخمین رواناب سالانه، نشریۀ آب و خاک (علوم و صنایع کشاورزی)، جلد 25، شمارۀ 2: 379-365.
[7]. احمدزاده قره گویز، کاوه؛ میرلطیفی، سید مجید؛ محمدی، کوروش، 1389، مقایسه سیستم های هوش مصنوعی (ANFIS و ANN) در تخمین میزان تبخیر و تعرق گیاه مرجع در مناطق بسیار خشک ایران، نشریۀ آب و خاک، جلد 26، شمارۀ 4: 689-679.
[8]. سماعی رشتیزند، 1386، بارشهای مولد سیل در حوضة آبخیز خرمآباد، پایاننامۀ کارشناسی ارشد، دانشگاه آزاد اسلامی، واحد خرمآباد: 102.
[9]. Kurtulus, B. and M. Razack, 2010. Modeling daily discharge responses of a large karstic aquifer using soft computing methods: artificial neural network and neurofuzzy. Journal of Hydrology, 381: 101-111.
[10]. Conrads, P.A., et al, 1999, Comparing physics–based and neural network models for simulating salinity, temperature and dissolved oxygen in a complex, tidally affected river basin proceeding of the South Carolina environmental conference, South Carolina, Unites state.
[11]. Rajurkar, M.P., U.C. Kothyari and U.C. Chube. 2004. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology, 285(4): 96-113.
[12]. Firat, M. and M. Gungor. 2007. River flow estimation using adaptive neuro-fuzzy inference system. Mathematics and Computers in Simulation, 75(3-4): 87-96.
[13]. Dorum, A., Yarar, A., Faik Sevimli, M and Onüçyildiz, M., 2010. Modelling the rainfall–runoff data of Susurluk basin, Expert Systems with applications, 37(9): 6587-6593.
[14]. Kisi, O., Shiri and J., Tombul, M., 2012. Modeling rainfall-runoff process using soft computing techniques, Computers & Geosciences, 51: 108-117.
[15]. Bhatia, N., Sharma, L., Srivastava, S., Katyal, N., Srivastav, R., 2013. Streamflow Decomposition Based Integrated ANN Model, Open Journal of Modern Hydrology, 3: 15-19.
[16]. Vafakhah, M., 2012. Application of artificial neural networks and adaptive neuro-fuzzy inference system models to short-term stream flow forecasting, Canadian Journal of Civil Engineering, 39(4): 402-414.
[17]. Jang, J. S. R., Sun, C. T. and Mizutani, E. 1997. "Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence".