Base Flow Estimation in Tireh Dorood River in order to EnvironmentalFlow Assessmen

Document Type : Research Article


1 Faculty of Natural Resources and earth sciences, Shahrekord Univarsity, Shahrekord, Iran.

2 Ms.C in Natural Resources and earth sciences Faculty, Shahrekord Univarsity, Shahrekord, Iran.

3 Faculty of Natural Resources and earth sciences, Shahrekord Univarsity, Shahrekord, Iran

4 Faculty of Natural Resources, Lorestan University, Khoramabad, Iran.


Commonly used environmental flow evaluation techniques range in complexity. Some requires stream flow records alone, and some accounts for the habitat requirements of individual species life-stages and physical characteristics of the stream. Hydrological based methods for environmental flow assessment are the first step in planning for environmental allocation in developing countries. For determining environmental needs in a water ecosystem knowledge of the minimum discharge is needed that in hydrology named base flow. Determining it needs to hydrograph separation. For this purpose 30 years daily flow data of Tireh Dorood hydrometery station, on Tireh LorestanRiver was selected. Base flow calculated for daily data from 1982-2011 using BFI, Recursive Digital Filter and HYSEP methods. Results show that base flow in this river forms between 74 -78 % of stream flow. Comparing methods using error measures shows that sliding limit method and Lyne and Hulic method with filter index of 0.9 are suitable methods for base flow separation in Tireh River.


Main Subjects


    1. ارفع‌نیا، رامین؛ سامانی، نوذر؛ 1384، «ترسیم منحنی جدایش هیدروگراف رودخانه در حوضۀ آبریز کارستی زاینده‌رود»، نشریۀ علوم دانشگاه تربیت معلم، 5(3): 600-585.
    2. تمسکنی، احمد؛ ذاکری‌نیا، مهدی؛ هزار‌جریبی، ابوطالب؛ دهقانی، امیر‌احمد؛ 1392، «مقایسۀ روش‏های جداسازی دبی پایه از هیدروگراف روزانۀ جریان )مطالعۀ موردی حوضۀ ‏‌بالادست سد بوستان در استان گلستان)»، نشریه پژوهش‏های حفاظت آب و خاک، 20(6): 145-127.
      1. سمیعی، مسعود؛ ملکیان، آرش؛ 1389، «مقایسۀ روش‏های جداسازی جریان پایه با استفاده از فیلتر عدد برگشتی و مدل PART»، مجموعه مقالات ششمین همایش ملّی علوم و مهندسی آبخیزداری و چهارمین همایش ملّی فرسایش و رسوب، دانشگاه تربیت مدرس.
      2. قنبر‌پور، محمدرضا؛ تیموری، مهدی؛ غلامی، شعبان‌علی؛ 1387، «مقایسۀ روش‏های برآورد دبی پایه بر اساس تفکیک هیدروگراف جریان (مطالعۀ موردی حوضۀ آبخیز کارون)»، مجلۀ علوم و فنون کشاورزی و منابع طبیعی، 12(44): 1-10.
      3. کارآموز، محمد؛ عراقی‌نژاد، شهاب؛ 1384، چاپ اول، هیدرولوژی پیشرفته، انتشارات دانشگاه صنعتی امیرکبیر، 190ص.
    1. تیموری، مهدی؛ قنبرپور، محمد‌رضا؛ گنبد، محمد‌بشیر؛ ذوالفقاری، مریم؛ کاظمی‏کیا، سمیه؛ 1390، «مقایسۀ شاخص جریان پایه در روش‌های مختلف تجزیۀ هیدروگراف جریان در تعدادی از رودخانه‌های استان آذربایجان غربی»، مجله علوم و فنون کشاورزی و منابع طبیعی، 15(57): 219-228.
    2. حسنی، مهدی؛ ملکیان، آرش؛ رحیمی، محمد؛ سمیعی، مسعود؛ خاموشی، محمدرضا؛ 1391، «بررسی کارایی برخی از روش‏های جداسازی جریان پایه در رودخانه‏های مناطق خشک و نیمه‌خشک (مطالعۀ موردی حوضۀ آبخیز حبله‌رود(»، دوفصلنامۀ علمی‌ـ پژوهشی خشک‌بوم، 2(2): 22-10.
    3. دولت‌آبادی، نرگس‌خاتون؛ حسینی، علی‌رضا؛ داوری، کامران؛ مساعدی، ابوالفضل؛ 1391،«برآورد جریان پایه با استفاده از روش‏های فیلتر دیجیتال بازگشتی و نرم‌افزار BFI_3.0 (مطالعۀ موردی بخشی از حوضۀ مهارلو-بختگان(»، سومین همایش ملی مدیریت جامع منابع آب، ساری


    1. 9.                   Aksoy, Hafzullah. Kurt, Ilker. Eris, Ebru., 2009. Filtered Smoothed Minima base flow separation method. Journal of Hydrology 372: 94–101.
    2. 10.               Arnold J.G. & P. M. Allen. 1999. Automated methods for estimating base flow and ground water recharge from stream flow records. Journal of American Water Resources Association, 35(2): 411-424.
    3. 11.               Bruskova, Valeria. (2008). Assessment of the Base Flow in the Upper Part of Torysa River Catchment, Slovak Journal of Civil Engineering, 2: 8-14.
    4. 12.               Corzo, Gerald. & Solomatine, Dimitri. (2007). Base flow separation techniques for modular artificial neural network modeling in flow forecasting, Hydrological Sciences Journal, 52:3, 491-507, DOI: 10.1623/hysj.52.3.491
    5. 13.               Echhardt, K. (2008). A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J. Hydrol. 352: 168-173.
    6. 14.               Eckhardt, K. (2005). How to construct recursive digital filters for base flow separation. Hydrology Process, 19(2): 507-515.
    7. 15.               Gippel, Christopher. & Stewardson, Michael (1998). Use of Wetted Perimeter in Defining Minimum Environmental Flows, Regulated Rivers: Research & Management, 14: 53–67.
    8. 16.               Gregor M. (2010). User Manual " BFI+ 3.0".
    9. 17.               Hall Francis (1968). Base flow recessions – a review. Water Resources Research 4(5): 973-983.
    10. 18.               Hughes, D. A., H. Pauline & Watkins, D. (2003). Continuous base flow separation from time series of daily and monthly stream flow data. Water SA, 29(1): 43-48.
    11. 19.               Kinhill Engineers Pty. Ltd. (1988). Techniques for Determining Environmental Water Requirements – A Review. Technical Report Series Report No. 40. 82 pp. (Department of Water Resources: Victoria.)
    12. 20.               Li, L., Maier, H.R., Lambert, M.F., Simmons, C.T. and Partington, D. (2013). Framework for assessing and improving the performance of recursive digital filters for baseflow estimation with application to the Lyne and Hollic filter, Environmental Modeling and Software, 41:163-175.
    13. 21.               Li Q. Xing Z. Danielescu S. Li S. Jiang Y. Meng F. (2014). Data requirements for using combined conductivity mass balance and recursive digital filter method to estimate groundwater recharge in a small watershed, New Brunswick, Canada. Journal of Hydrology, 511: 658–664.
    14. 22.               Lyne, V.D. & M. Hollick. (1979). Stochastic time-variable rainfall runoff modeling. Hydrology and Water Resources Symposium, Institution of Engineering, Australia, Perth, pp: 89–92.
    15. 23.               Nathan, R.J. and McMahon, T.A. (1990). Evaluation of Automated Techniques for Base Flow and Recession Analysis. Water Resources Research, 26(7):1465-1473.
    16. 24.               O Brien, R.J., Misstear, B.D., Gill, L.W., Deakin, J.L. and Flynn, R. (2013). Developing an integrated hydrograph separation and lumped modeling approach to quantifying hydrological pathways in Irish river catchments,Journal of Hydrology, 486: 259-270.
    17. 25.               Penas, Francisco Jesus, Juanes, Jose Antonio, Alvarez-Cabria, Mario., Alvarez, Cesar, Garcia, Andres, Puente, Araceli, & Barquin, Jose (2013). Integration of hydrological and habitat simulation methods to define minimum environmental flows at the basin scale, Water and Environment Journal,28(2):252-260. doi:10.1111/wej.12030
    18. 26.               Pettyjohn, W. A., & Henning, R. (1979). Preliminary estimate of ground-water recharge rate, related stream flow and water quality in Ohio: Ohio state University water resources center project completion report number 552, 323.
    19. 27.               Rimmer, A. and A. Hartmann, (2014). Optimal hydrograph separation filter to evaluate transport routines of hydrological models, Journal of Hydrology, 514:249-257.
    20. 28.               Santhi, C. Allen, M, P. Muttian, R, S. Arnold, J, G. Tuppad, P. (2008). Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. Journal of Hydrology ,351: 139– 153.
    21. 29.               Smakhtin , V. U. Shilpakar, R. L. & Hugheds D. A. (2006) Hydrology-based assessment of environmental flows: an example from Nepal, Hydrological Sciences Journal, 51(2) 207-222, DOI: 10.1623/hysj.51.2.207
    22. 30.               Smakhtin V.U., 2001. Estimating continuous monthly base flow time series and their Possible applications in the context of the ecological reserve, ISSN 0378-4738., Water SA Vol. 27 No. 2 April 2001
    23. 31.               Smakhtin, V.U. and D.A. Watkins 1997. Low flow estimation in South Africa. WRC Report no 494/1/97.
    24. 32.               Tennant, D.L. (1976). Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries 1: 6–10.
    25. 33.               Tharme, R. (1996). Review of the International Methodologies for the Quantification of the Instream Flow Requirements of Rivers. 116 pp. Water Law Review Final Report for Policy Development for the Department of Water Affairs and Forestry, Pretoria. (Freshwater Research Unit, University of Cape Town: Cape Town.)


Volume 2, Issue 3 - Serial Number 3
September 2015
Pages 275-287
  • Receive Date: 08 August 2015
  • Revise Date: 16 September 2015
  • Accept Date: 27 September 2015
  • First Publish Date: 27 September 2015