Document Type : Research Article
Authors
1 Ph.D Student of Water Resources Management, Birjand University, Birjand, Iran.
2 Department of Water Engineering, Birjand University, Birjand
3 Ph.D Student of Water Resources Management, Shahid Chamran University, Ahwaz, Iran.
4 Ph.D Student of Watershed, Kashan University, Kashan, Iran.
Abstract
Keywords
Main Subjects
10. Pai PF, Hong WC. A recurrent support vector regression model in rainfall forecasting. Hydrological Process. 2007;21: 819-827.
11. Hamel LH. Knowledge discovery with support vector machines (Vol. 3). John Wiley & Sons. 2011.
12. Adamowski J, Prasher SO. Comparison of machine learning methods for runoff forecasting in mountainous watersheds with limited data. Journal of Water and Land Development. 2012;17(8):89–97.
13. Choubey V, Mishra S, Pandy SK. Time Series Data Mining in Real Time Surface Runoff Forecasting through Support Vector Machine. International Journal of Computer Applications. 2014;98(3): 23-30.
14. Jang JSR. ANFIS: adaptive-network-based fuzzy inference system. Systems, Man and Cybernetics, IEEE Transactions on. 1993; 23(3): 665-685.
15. Nayak PC, Sudheer KP, Rangan DM, Ramasastre KS. A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology. 2004;291(1-2):52–66
16. Sanikhani H. Kisi, O. River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resources Management. 2012;26(6): 1715-1729.
17. Talei A, Chua LHC, Wong TSW. Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling. Journal of Hydrology. 2010;391(3-4): 248-262.
18. Ghose D, Panda P, Swain P. Prediction and optimization of runoff via ANFIS and GA. Alexandria Engineering Journal. 2013;52(2): 209-220.
19. Chen SH, Lin YH, Chang LC, Chang FG. The strategy of building a flood forecast model by neuro fuzzy network. Hydrological Processes. 2006;20(7): 1525- 1540.
20. He Z, Wen X, Liu H, Du J. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. Journal of Hydrology. 2014;509:379–386
21. Karakus M, Tutmez B, Fuzzy and multiple regression modeling for evaluation of intact rock strength based on point load, Schmidt hammer and sonic velocity, Rock Mech. Rock Eng. 2006;39(1): 45–57.
22. Jang JSR. Fuzzy controllersbased on temporal back propagation, IEEE Trans. Neural Netw. 1992; 3:714–723.
23. Ferreira C. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Systems, forthcoming. 2001.
24. Hofmann T, Tsochantaridis I, Altun Y. Learning over structured output spaces via joint kernel functions. Sixth Kernel Workshop. 2002
25. Eskandari A, Nouri ;R, Meraji H, Kiaghadi A. Developing a Proper Model for Online Estimation of the 5-Day Biochemical Oxygen Demand Based on Artificial Neural Network and Support Vector Machine. J of Environment Studies. 2012;38(1):71-82 [Persian].
26. Nash JE, Sutcliffe JV. River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology. 1970;10(3): 282–290
27. Swinscow TDV, Campbell MJ. Statistics at Square One. London: BMJ Publication. 106 P. 2002.
28. Salas JD, Delleur JW, Yevjevich V, Lane WL. Applied Modeling of Hydrologic Time Series. Water resource Publications, P. O. Box 2841. Littleton, Colorado.80161, U.S.A. 1980; 484 P.