Role of suspended particulates on heavy elements transport in the middle part of Dez River

Document Type : Research Article


1 Water & Soil Conservation Dep., SCWMRI

2 Khuzestan Agricultural and Natural Resources Research and Education Center, Agricultural, Education and Extension Organization, Ahvaz, Iran

3 Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran

4 Khuzestan Water and Power Authority


This study was performed in order to monitor and recognize the condition of transported suspended particulates and absorbed heavy metals in Dez river between Shahid Abbaspour Dam and Shotate river Junction and the effect of inflow from two tributaries in Kouzestan province, Iran. We took 38 samples in three steps including a base flow period and two flood events from four gauging sites including Dokouheh on Balaroud, Zourabad on Kohnak, Dezful on Dez upstream and Harmalah on Dez downstream. After sediment filtration, some samples were analyzed by Inductively Coupled Plasma to determine 12 heavy metals. The results showed that the river suspended sediment classified as not polluted by heavy metals for agriculture purpose at least for studies samples. However, the amount of three heavy metals including Cobalt (20-22 ppm), Chrome (88-96 ppm) and Nickel (76-91 ppm) are more than environmental safe thresholds. In addition, the concentration of those heavy metals in downstream station is more than tributaries which is probably due to deposition of coarser sediment particles. Therefore, it can be concluded that the suspended sediments between Dokouheh to Haramalah reach and Zourabad to Haramalah reaches are polluted by three mentioned heavy metals.


Main Subjects

  1. Environment Protect Agency (EPA). Technical guidance manual for developing total maximum daily loads, Book 2: Streams and rivers, Environmental Protection Agency, EPA 823-B-97-002. 1997.
  2. Babapour Mofrad A, Rostami S, Alanezhad M, Frozanfar M, Khaksar E, Ramezani Z. Determination of some heavy metals in Karoon and Dez rivers. Jentashapir Journal of Medical Science. 2013; Special Issue: 87-100 [Persian]
  3. Sadeghi SHR, Kiani Harchegani M, Saeedi P. Temporal and spatial variations of relationship between suspended load concentration and some contaminants of the Zayandeh-Rud River. Water Resources Engineering. 2015; 8 (25): 97-108. [Persian]
  4. Richards, RP. Estimation of pollutant loads in rivers and streams: A guidance document for NPS programs. US Environmental Protection Agency, Region VIII, Denver. 1998; 108 p.
  5. Refahi, H. Water erosion and its control. University of Tehran Publication, 6th edition. 2007; 671p. [Persian]
  6. Rahmani, HR, Kalbasi M and Hajrasuliha S. Lead-polluted soil along some Iranian highways. Journal of Science and Technology of Agriculture and Natural Resources. 2000; 4 (4): 31-42. [Persian]
  7. International Atomic Energy Association (IAEA). Guidelines for using FRNs to assess soil erosion and effectiveness of soil conservation strategies. IAEA TECDOC-1741. IAEA publication. 2014; 213 p.
  8. Kiani Harchegani M, Sadeghi SHR. Spatial variations of relationship between heavy metals transportation and particle size distribution of suspended sediments. Journal of Water and Soil Conservation. 2013; 20(1): 169-184.
  9. Rajabzadeh Sekkeh M, Saeedi M. The role of sediments and river suspended materials on absorbent of Copper, Zinc and Cadmium in laboratory scale-Case study: Jajroud river, The proceeding of the 4th Iranian civil engineering congress, University of Tehran, 2010; 8p. [Persian]
  10. Sadeghi SHR, Kiani Harchegani M, Younesi, HA. Suspended sediment concentration and particle size distribution and their relationship with heavy metals contents, Journal of Earth System Science. 2012; 121(1): 63-71.
  11. Alves CM, Boaventura RRAR, Soares HMVM. Evaluation of heavy metals pollution loadings in the sediments of the Ave river basin (Portugal), Soil and Sediment Contamination: An International Journal, 2009; 18 (5) 603-618.
  12. Walling DE. Measuring sediment yield from river basins, In: Lal, R. (Ed), Soil erosion research methods, Soil and water conservation society. 1994; 39-74.
  13. Arabkhedri M. Estimation of bed load to suspended load ratio in Dez and Minab Rivers. Journal of Watershed Engineering and Management, 2015; 6 (4): 4, 390-399. [Persian]
  14. Kheirvar N, Dadolahi Sohrab A. Heavy metal concentrations in sediments and Large Scaled Barb (Barbus grypus) from Arvand river. Environmental Science and Technology. 2010; 12(2): 123-131. [Persian]
  15. Sekabira K, Oryem Origa H, Basamba TA, Mutumba G, Kakudidi E. Assessment of heavy metal pollution in the urban stream sediments and its tributaries. International Journal of Environment Science Technology. 2010; 7 (3): 435-446.
  16. Shafie NA, Aris AZ, Haris H. Geoaccumulation and distribution of heavy metals in the urban river sediment. International Journal of Sediment Research, 2014; 29 (3): 368–377.
  17. Bagheri H, Alinejad S, Darvish Bastami K. Heavy metals (Co, Cr, Cd, Ni, Pb and Zn) in sediment of Gorganroud river, Iran. Research Journal of Environmental Toxicology. 201; 15(2): 147-151.
  18. Dadolahi Sohrab A, Nazarizadeh Dehkordi M. Heavy metals contamination in sediments from the north of the Strait of Hormuz. Journal of the Persian Gulf (Marine Science). 2013; 4 (10): 39-46.
  19. Musavi-Nadushan R, Salimi L, Zaheri-Abdehvand L. Determining the concentrations of Nickel, Lead and Cadmium in Barbus grypus of Dez river, Iran. Journal of Mazandaran University of Medical Science. 2014; 23(110): 232-36. [Persian]
  20. Velayatzadeh M, Abdollahi S. Study and comparison of Hg, Cd and Pb accumulation in the muscle and liver tissues of Aspius vorax in Karoon river, in winter season. Journal of Animal Environment. 2010; 2(4): 65-72. [Persian]
  21. Beheshti M, Askari Sari A, Velayatzadeh M. Assessment of heavy metals concentration of fish (Liza abu) in Karoon river, Khouzestan Province. Water and Wastewater, 2012; 3: 125-133. [Persian]
  22. Charkhabi AH, Mahdian MH, Saghafian B, Ashoorloo D, Ghiassi NG. Spatial Properties and Geostatistical Analysis of the Soil Parameters of the Shadegan Wetland as Related to Iraq-Kuwait War in 1991. Soil Conservation and Watershed Management Research Institute. Unpublished Report. 2011.
  23. Charkhabi AH, Mahdian MH, Gili R, Ashoorloo M, Iranmanesh F. Spatial properties and geostatistical analysis of the soil parameters of the Khuzestan Province as related to Iraq-Kuwait War in 1991. Soil Conservation and Watershed Management Research Institute. Unpublished Report. 2011.
  24. Mirabolghasemi H. The effect of dams on suspended sediment and erosion and sedimentation trend of rivers (Case study: Karoun river). MSc thesis, Tarbiat Modarres University. 1994. [Persian]
  25. American Standard and Testing Methods (ASTM). Standard test method for determining sediment concentration in water samples, ASTM D 3977-97. Annual Book of Standards, Water and Environmental Technology. Volume 11.02. West Conshohocken, Pennsylvania. 2006.
  26. American Standard and Testing Methods (ASTM). Standard practice for total digestion of sediment samples for chemical analysis of various metals, ASTM D 4698-92. West Conshohocken. 2013.
  27. Environmental Protection Organization of Iran. Soil quality standard and its related guides. Department of Human Environment, Office of Land and Water. 2014. [Persian]
  28. Williams GP. Sediment concentration versus water discharge during single hydrologic events in rivers. Journal of Hydrology. 1989; 111(1-4): 89-106.
  29. Gomi T, Moore RD, Hassan MW. Suspended sediment dynamics of small forest streams of the Pacific Northwest. Journal of the American Water Resources Association. 2005; 41: 877-898.
  30. Baybordi M. Soil physics. University of Tehran Publication, 2nd edition. 1984; 523p. [Persian]
Volume 4, Issue 4
January 2018
Pages 1165-1174
  • Receive Date: 26 May 2017
  • Revise Date: 09 August 2017
  • Accept Date: 09 August 2017
  • First Publish Date: 22 December 2017
  • Publish Date: 22 December 2017