Application of Met heuristic Algorithm of Ant Colony Optimization in Optimal Allocation of Water Resources of Chah-Nime of Sistan under Managerial Scenarios

Document Type : Research Article


1 Associate Professor of Economic Sciences, University of Sistan and Baluchestan, Iran

2 Assistant Professor of Agricultural Economics, University of Sistan and Baluchestan, Iran

3 MSC of Agricultural Economics, University of Sistan and Baluchestan, Iran


The aim of this study is to optimize the allocation of water resources in Chah-nimeh Sistan reservoirs under three management scenarios using the metamorphic techniques of the Ant Community. The results of the research show that the best value of the objective function (maximizing water supply) was 5.82 million cubic meters using the algorithm. Also, in the early years, the optimum release rate of ant anchor algorithm 21 and the demand was 3.98 million cubic meters that there were 3.77 million cubic meters of lack of supply. The function of Ant's algorithm is closer to the optimal objective function in the second pipeline scenario for drinking water in Zahedan. According to the final results, the average values of the objective function were 100.0593 in the scenario of fixing the microspheres, hence, the release from agricultural sector, after a while, would not be possible. The results of development scenario of area under cultivation based on Horizon 1404 indicate that demand was low at the beginning of the period and it gradually increased with agricultural development in the region. Therefore, it has been suggested that it will be possible to overcome the recent difficulties and droughts with the extension of Iran's right of Afghanistan


Main Subjects

[1]. Shahroudi, E.A. and Chaizari, M., Factors influencing farmers' attitudes toward participation in water user's cooperative, case study: Khorasan Razavi province Journal of agricultural and natural resources science and technology, 2007, 1(42): 319-299 [Persian]
[2]. Sardar shahreki A., Optimal alloction of water resources in the Hirmand basin using game theoty and evaluation of management scenarios, Ph.D. in Agricultural Economics, Faculty of Management and Economics, University of Sistan and Baluchestan, Zahedan, 2016. [Persian]
[3]. Azizy J., Agricultural Sustainability, Quarterly Journal of Agricultural Economics and Development, 9(36): 113-136, 2001. [Persian]
[4]. Parhizkari A., Determining the economic value of irrigation water and farmers response to pricing and non-price policies in Qazvin province, Masters thesis in Agriculture Economics, School of Agriculture, Universitu of Zabol, 2013, page 115. [Persian]
[5]. Babel M. S., Das Gupta A., and Nayak D. K, A Model for optimal Allocation of Waterto competing demands. Water resources management. 2005. 19(6): 693- 712.
[6]. Yousefi A., Khalilian S.,Belaly H., A Study of the Strategic Importance of Water Resources in the Iranian Economy Using the General Equilibrium Model, Jornal of Agricultural Economics and Development. 2011, 25(1): 12-109. [Persian]
[7]. Sardar Shahreki A., Shahreki J., Hashemi Monfared S.A., Investigating the Management Approaches of Sistan Water Resources Utilization Using Fuzzy Analytical Hierarchy, Public Management Research. 2016. 9(31): 73-98. [Persian]
[8]. Borhani darian A.R., Mortazavi Naeini M., Comparison of Fractional Methods in Optimal Utilization of Water Resources, Water and Wastewater. 2008, 19(68): 57-66. [Persian]
[9]. Afshar M.H., Rezaee sangdehi S.A.,Moeeini R., Reservoir Operation Optimization using Stochastic Adaptive Refinement of Ant Algorithms, Iran-Water Resourese Research, Iran, 2010, 6(1). [Persian]
 [10]. Afshar M.H., Rezaee Sangdehi S.A., Ranjbarjorzadeh R., The Performance of Ants Algorithm in Optimizing the Operation of dams reservoirs Comparison of two algorithms, First International Water Resources Management Conference, Shahroud University of Technology, Iran, 2009. [Persian]
[11]. Hossein Zadeh H., Sharifi F., Multi- objective charge optimal alloction using antivirus multi-population Algorithm, Iranian Water Resources Reseach Journal, 2010. 6(2). [Persian]
[12]. Borhani darian A., Antarctic Algorithm Continuously Optimizes the Operation of multi-threading systems, Case Study of Karkheh Reservoirs, Water and Wastewater, 2010, 4. [Persian]
[13]. Bani bashar M., Alami M., Abasi H., Optimization of Operation of the Multifunctional Dam of the Alevis using the Ant Societys Algorithm, Jornal of Water and Soil Science. 2010. 1-20(4).[Persian]
[14]. Hashemi Nasab S.S., Shojaei S., Nejhad Naderi M., Application of Optimization of Ant Antarctic Community in Determining the Optimal Utilization Policy of the KalanMalayer Dam Reservoir, 10 th Iranian Hydraulic Conference, University of Guilan, November 2011. [Persian]
[15]. Gasemi F., Ghasemi A., Comparison of three methods of fuzzy Logic, genetic algorithm and elite Ant colony in optimization of reservoir dams, 7 th National Civil Engineering Congress, Shahid Nikbakht School of Engineering, Zahedan, 17 and 18 May, 2013. [Persian]
[16]. Afshar M.H., Rezaee Sangdehi S.A., Moeini R., Ant Colony Optimization Algorithms for Optimal Operation of Reservoirs: A Comparative Study of Four Algorithms, Ferdowsi Civil Engineering jornal. 2014, 25(2). [Persian]
[17]. Najafi A., Afshar A., Management The Consequences of Chemical Attacks on Urban Water Distribution Networks Using the Optimization Society of Antarctica,Water and Wastewater. 2015, 26(2): 82-94. [Persian]
[18]. Jalali, M.R., Afshar, A. and Marino, M.A., Improved Ant Colony Optimization Algorithm for reservoir operation, Scientica Iranica. 2006, 13: 295-302.
[19]. Afshar, M.H., Ketabchi, H. and Rasa, E., Elitist Continuous Ant Colony Optimization Algorithm: Application to reservoir operation problems, International Journal of Civil Engineering. 2006, 24.
 [20]. Jalali, M.R., Afshar, A. and Marino, M.A., Reservoir operation by Colony Optimization Algorithms, Iranian Journal of Science & Technology. 2006, 3.
[21]. Kumar, N.D. and Reddy, M.J., Ant colony optimization for multi-purpose reservoir operation, Water Resources Management. 2006, 20: 879-898.
[22]. Jalali, M.R., Afshar, A., Marino, M.A., Multi-Colony Ant Algorithm for Continuous Multi-Reservoir Operation Optimization Problem, Water Resources Management. 2007. 21: 1429-47.
[23]. Moeini R and Afshar MH., Application of an ant colony optimization algorithm for optimal operation of reservoir. A comparative study of three proposed formulations. Sharif University of Technology. Transation A: Civil Engineering. 2008, 16(4): 273-285.
[24]. López-Ibáñez, M., Prasad, T. D., and Paechter, B., Ant colony optimization for optimal control of pumps in water distribution networks. J. Water Resour. Plann. Manage. 2008, 134(4), 337-346.
[25]. Socha, K., and Dorigo, M., Ant colony optimization for continuous domains. European J. of Operational Research. 2008, 185(3), 1155-1173.
[26]. Darian, A. B., and Moradi, A. M., Reservoir operating by ant colony optimization for continuous domains (ACOR) case study: Dez reservoir. International J. of Eng., and Natural Sciences. 2008, 3(2), 125-129.
[27]. Hashemi, S. S., Tabesh, M., and Ataee Kia, B., Ant-colony optimization of pumping schedule to minimize the energy cost using variable-speed pumps in water distribution networks, Urban Water Journal. 2014. 11(5): 335-347.
[28]. Deng L, Liu, B. The Application Research on the Irrigation Canal System Optimizing the Water Distribution Using Improved Ant Colony Algorithm. Computer Science and Technology. 2017, 12-19.
[29]. Nguyen D, AscoughII J, Maier H, Dandy G, Andales A. Optimization of irrigation scheduling using ant colony algorithms and an advanced cropping system model. Environmental Modelling & Software. 2017. 97: 32-45.
[30]. Özdemir O, Bettemir O, Firat M. Minimum-Cost Design of Water Distribution Line with Differential Evolution Algorithm. Sigma J Eng & Nat Sci. 2017. 8 (3): 189-198.
[31]. Tayfur G. Modern Optimization Methods in Water Resources Planning, Engineering and Management. Water Resources Management. 2017. 31(10): 3205-3233.
[32]. Dorigo, M.; Gianni Di Caro, The Ant Colony Optimization Metaheuristic, Iridia university, 1999.
[33]. Dorigo, M.; V. Maniezzo; and A. Colorni. The Ant System: Optimization by a Colony of cooperating agents, IEEE Transaction on System, Man and Cybernetics. 1996, 26: 29-41.
[34]. Dréo, J., Pétrowski, A., Siarry, P., Taillard, E. Metaheuristics for Hard Optimizations, Springer-Verlag Berlin Heidelberg, 2006.
[35]. Dorigo, M.; Luca Maria Gambardella; and others. Ant Colony Optimization and Swarm Intelligence. Springer-Verlag Berlin Heidelberg, 2006.
[36]. Tavakoli Moghadam R., Norozi N., Kalami S.M., Salamat bakhsh A.,The meta-innovative Algorithms of theoretical fundamentals and implementation in MATLAB, Islamic Azad University,South Tehran University , FirstEdition Tehran,2013 [Persian].
[37]. Dorigo, M.; Luca Maria Gambardella. Ant Colonies for the Traveling Salesman problem, Bio-systems. 1997, 43: 73-81.
Volume 5, Issue 4
January 2019
Pages 1063-1078
  • Receive Date: 30 March 2018
  • Revise Date: 03 May 2018
  • Accept Date: 06 August 2018
  • First Publish Date: 22 December 2018