Hydrothermally in-situ Deposited BiVO4 Crystals Via a Seed-free Approach and its Application in Water Treatment and Hydrogen Generation

Document Type : Research Article

Authors

1 Ph.D. Student, Faculty of New Science and Technology, University of Tehran, Tehran, Iran

2 Assistant Professor, Faculty of New Science and Technology, University of Tehran, Tehran, Iran

3 Associate Professor, Faculty of New Science and Technology, University of Tehran, Tehran, Iran

Abstract

Thin films of Bismuth Vanadate (BiVO4)crystals are deposited on bare FTO substrates using hydrothermal method. The samples are annealed in a temperature range from 450 oC to 550 oC. X-Ray Diffraction (XRD) pattern of the prepared BiVO4 thin films confirms its monoclinic structure. Scanning Electron Microscopy (SEM) images determine the truncated bipyramid shape of the crystals while a significant number of crystals expose their high photoelectrochemically active facet. By controlling and optimizing parameters such as temperature, deposition time, precursor concentration, and annealing temperature, a uniform and robust BiVO4 layer is synthesized. Finally, the optimum BiVO4/FTO layer is prepared at 120 oC for at least 4 hours by using a 0.027M BiVO4 precursor solution with a pH of 1.2. In order to have a measurement for the application of the fabricated crystals in water treatment and Hydrogen generation, the linear sweep voltammetry (LSV) measurements of samples are measured and compared. The LSV tests show a photo-response up to 70 µA/cm2 at V=1 V (vs Ag/AgCl) for BiVO4/FTO samples annealed at temperatures higher than 500 oC. In addition,  a simple model are proposed to understand the growth behavior of BiVO4 crystals under different growth conditions.

Keywords

Main Subjects


[1]. T. Morgan, The hydrogen economy-a non technical review, (2006).
[2].  C.M. Kalamaras, A.M. Efstathiou, Hydrogen production technologies: current state and future developments, in: Conf. Pap. Sci., Hindawi, (2013).
[3].  S. Kohtani, A.S. Makino, A. Kudo, K. Tokumura, Y. Ishigaki, Photocatalytic degradation of 4-n-nonylphenol under irradiation from solar simulator : Comparison between BiVO4 and TiO2 photocatalysts, Chem. Lett. 31 (2002) 660–661.
[4].  M. Shang, W. Wang, J. Ren, S. Sun, L. Zhang, A novel BiVO4 hierarchical nanostructure: controllable synthesis, growth mechanism, and application in photocatalysis, CrystEngComm. 12 (2010) 1754.
[5].  A.J. Nozik, Photoelectrochemistry: applications to solar energy conversion, Annu. Rev. Phys. Chem. 29 (1978) 189–222.
 
[6].  A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc. 121 (1999) 11459–11467.
[7].  S. Tokunaga, H. Kato, A. Kudo, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties, Chem. Mater. 13 (2001) 4624–4628.
[8].  H. Fan, D. Wang, L. Wang, H. Li, P. Wang, T. Jiang, T. Xie, Hydrothermal synthesis and photoelectric properties of BiVO4 with different morphologies: An efficient visible-light photocatalyst, Appl. Surf. Sci. 257 (2011) 7758–7762.
[9].  Y. Hu, W. Chen, J. Fu, M. Ba, F. Sun, P. Zhang, J. Zou, Hydrothermal synthesis of BiVO4/TiO2 composites and their application for degradation of gaseous benzene under visible light irradiation, Appl. Surf. Sci. 436 (2018) 319–326.
[10].            T. Soltani, A. Tayyebi, B. Lee, Enhanced photoelectrochemical (PEC) and photocatalytic properties of visible-light reduced graphene-oxide/bismuth vanadate, Appl. Surf. Sci. 448 (2018) 465–473.
[11].            S. Yousefzadeh, M. Faraji, A.Z. Moshfegh, Constructing BiVO4/Graphene/TiO2 nanocomposite photoanode for photoelectrochemical conversion applications, J. Electroanal. Chem. 763 (2016) 1–9.
[12].            R. Afonso, J.A. Serafim, A.C. Lucilha, M.R. Silva, L.F. Lepre, R.A. Ando, L.H. Dall’Antonia, Photoelectroactivity of bismuth vanadate prepared by combustion synthesis: Effect of different fuels and surfactants, J. Braz. Chem. Soc. 25 (2014) 726–733.
[13].            K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, T. Oi, Y. Iwasaki, Y. Abe, H. Sugihara, Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment, J. Phys. Chem. B. 3 (2006) 11352–11360.
[14].            J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting, Nano lett. 11 (2011) 4–10.
[15].            J. Choi, T. Song, J. Kwon, S. Lee, H. Han, N. Roy, C. Terashima, A. Fujishima, U. Paik, S. Pitchaimuthu, WO3 nanofibrous backbone scaffolds for enhanced optical absorbance and charge transport in metal oxide (Fe2O3, BiVO4) semiconductor photoanodes towards solar fuel generation, Appl. Surf. Sci. 447 (2018) 331–337.
[16].            L. Wang, W. Wang, W. Zhang, Y. Chen, W. Cao, H. Shi, M. Cao, Superior photoelectrochemical properties of BiVO4 nanofilms enhanced by PbS quantum dots decoration, Appl. Surf. Sci. 427 (2018) 553–560.
[17].            J. Zhang, H. Cui, B. Wang, C. Li, J. Zhai, Q. Li, Preparation and characterization of fly ash cenospheres supported CuO – BiVO4 heterojunction composite, Appl. Surf. Sci. 300 (2014) 51–57.
[18].            Y. Li, Z. Sun, S. Zhu, Y. Liao, Z. Chen, D. Zhang, Fabrication of BiVO4 nanoplates with active facets on graphene sheets for visible-light photocatalyst, Carbon. 94 (2015) 599–606.
[19].            W.J. Jo, J. Jang, K. Kong, H.J. Kang, J.Y. Kim, H. Jun, K.P.S. Parmar, J.S. Lee, Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity, Angew. Chem. 124 (2012) 3147–3151.
[20].            D. Wang, R. Li, J. Zhu, J. Shi, J. Han, X. Zong, C. Li, Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: Essential relations between electrocatalyst and photocatalyst, J. Phys. Chem. C. 116 (2012) 5082–5089.
[21].            M. Li, L. Zhao, L. Guo, Preparation and photoelectrochemical study of BiVO4 thin films deposited by ultrasonic spray pyrolysis, Int. J. Hydrogen Energy. 35 (2010) 7127–7133.
[22].            F.F. Abdi, R. van de Krol, Nature and Light Dependence of Bulk Recombination in Co-Pi- Catalyzed BiVO4 Photoanodes, Phys. Chem. C. 116 (2012) 9398-9404.
[23].            J.A. Seabold, K. Choi, Efficient and stable photo-oxidation of water by a Bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst, JACS. 134 (2012) 2186-2192.
[24].            Y.H. Ng, A. Iwase, A. Kudo, R. Amal, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting, J. Phys. Chem. Lett. 1 (2010) 2607–2612.
[25].            L.H. Mascaro, A. Pockett, J.M. Mitchels, L.M. Peter, P.J. Cameron, V. Celorrio, D.J. Fermin, J.S. Sagu, K.G.U. Wijayantha, G. Kociok-köhn, F. Marken, One-step preparation of the BiVO4 film photoelectrode, J. Solid State Electrochem. 19 (2015) 31–35.
[25].
[26].            J. Su, L. Guo, S. Yoriya, C.A. Grimes, Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization : Application to photoelectrochemical water splitting, Cryst. Growth Des. 10 (2010) 856-861.
[27].            B.-C. Xiao, L.-Y. Lin, J.-Y. Hong, H.-S. Lin, Y.-T. Song, Synthesis of a monoclinic BiVO4 nanorod array as the photocatalyst for efficient photoelectrochemical water oxidation, RSC Adv. 7 (2017) 7547–7554.
[28].            S. Wang, P. Chen, J.-H. Yun, Y. Hu, L. Wang, An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting, Angew. Chemie Int. Ed. 56 (2017) 8500–8504.
[29].            S.S. Patil, M.A. Hassan, D.R. Patil, S.S. Kolekar, One-pot in situ hydrothermal growth of BiVO4/Ag/rGO hybrid architectures for solar water splitting and environmental remediation, Sci. Rep. 7 (2017) 1–12.
[30].            ASTM committee D-1 on paint and related coatings, Materials, and Applications, Standard test methods for measuring adhesion by tape test, ASTM International. (2009).
[31].            Y. Xue, X. Wang, The effects of Ag doping on crystalline structure and photocatalytic properties of BiVO4, Int. J. Hydrogen Energy. 40 (2015) 5878–5888.
 
[32].            D. Wang, H. Jiang, X. Zong, Q. Xu, Y. Ma, G. Li, C. Li, Crystal facet dependence of water oxidation on BiVO4 sheets under visible light irradiation, Chem. Eur. J. (2011) 1275–1282.
[33].            C. Li, P. Zhang, R. Lv, J. Lu, T. Wang, S. Wang, H. Wang, J. Gong, Selective Deposition of Ag3PO4 on Monoclinic BiVO4 (040) for Highly Efficient Photocatalysis, Small. 9 (2013) 3951-3956.
[34].            G. Tan, L. Zhang, H. Ren, J. Huang, W. Yang, A. Xia, Microwave hydrothermal synthesis of N-doped BiVO4 nanoplates with exposed (040) facets and enhanced visible-light photocatalytic properties, Ceram. Int. 40 (2014) 9541–9547.
[35].            D. Ke, T. Peng, L. Ma, P. Cai, K. Dai, Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light, Inorg. Chem. 48 (2009) 4685–4691.
[36].            P.W. Voorhees, The theory of Ostwald ripening, J. Stat. Phys. 38 (1985) 231–252.
[37].            A. Martinez-de La Cruz, U.M.G. Perez, Photocatalytic properties of BiVO4 prepared by the co-precipitation method: Degradation of rhodamine B and possible reaction mechanisms under visible irradiation, Mater. Res. Bull. 45 (2010) 135–141.
Volume 5, Issue 4
January 2019
Pages 1355-1369
  • Receive Date: 23 August 2018
  • Revise Date: 04 November 2018
  • Accept Date: 04 November 2018
  • First Publish Date: 22 December 2018
  • Publish Date: 22 December 2018