[1]. Saadati H, Khayyam M. Survey of Flood water Spreading on quantitative changes of Vegetation Cover and Groundwater Recharge by Remote Sensing and GIS in Tasouj Aquifer in East Azarbayjan.Territory. 2009; 5(19): 1-10) (In Persian).
[2]. Barkhordari J, Tireh Shabankareh K, Mehrjerdi MZ, Khalkhali M. Study of water spreading effects on quantitative and qualitative changes of pastural cover: A case study in station of Sarchahan water spreading (Hormozgan province). Watershed Researches in Pajouhesh & Sazandegi. 2009; 82: 65-72 (In Persian).
[3]. Poveda B. Farmland appraisal based on the analytic network process. J. Glob. Optim. 2008; 42: 143-155.
[4]. Boostani F, Mohhamadi H. Valuing water from spreading the FASA Grbaygan. Environmental Sciences and Technology, 2010; 12(3):45-60 (In Persian).
[5]. Chowdhury A, Jaha M. K, Chowdary V. M. Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS & GIS and MCDM techniques. J. Environ. Earth Sci. 2010; 59: 1209-1222.
[6]. Kowsar S.A, Desertification Control through Floodwater Harvesting: The Current State of Know-How. In C. Lee & T. Schaaf (Eds.),The Future of Drylands. 2008; 229-241.
[7]. Zahedi A, Jahanbakhsh F, Talebi A. Identification of flood prone areas using fuzzy logic and network analysis process (Case study: Mashhad). Journal of Water and Soil Sciences (Agriculture and Natural Sciences and Technologies). 2016; 6 (76): 185-196. (In Persian).
[8]. Nourollahi D, Zakeri Nairi M. Locating construction of flood spreading structures for feeding groundwater resources using multi criteria evaluation method (Case study: Eshtehard Industrial Estate Basin). Journal of Ecohydrology, 2018; 5 (4): 1371-1384. (In Persian).
[9]. Hafezimoghaddas N, Laskaripoor G, Khalaji J. Site selection of groundwater artificial recharge using AHP method and GIS, case study: Shahrekord Plain. 1st International Congress of Irrigation and Drainage, Ferdosi University, Mashhad, Iran; 2015. (In Persian).
[10]. Hassanzadeh Nafooti M, Jamali A, TEimouri M. Flood Spill Location Using Multi Criteria Evaluation (Case Study: Padua Basin in Bam City). Journal of Watershed Management Science and Engineering of Iran. 2018; 12 (40): 125-128. (In Persian).
[11]. Khashayi A, Ghahreman B, Kouchakzadeh M. Evaluation of aquifer water extraction potential by fuzzy hierarchical analysis process (Case study: Neyshabour plain). Iranian Journal of Water Research. 2011; 5 (90): 171-180. (In Persian).
[12]. Dagdeviren M, Yavuz S, Kılınc N. Weapon selection using the AHP and TOPSIS methods
under fuzzy environment. Expert Systems with Applications, 2009; 36(4), 8143-8151.
[13]. Ghodsi Pour H. Analytical Hierarchy Process. Amirkabir University of Technology Publications, 2016; 222 p. (In Persian).
[14]. Saeedi M, Abbasi AS, Sarpak M. Locating the appropriate landfill for hazardous waste using GIS site prioritization and hierarchical analysis (AHP) techniques. Environmental Science and Technology, Volume 11, Number One, Spring Special Issue, 2009; 231-241. (In Persian).
[15]. Fazelniya G, Hakimdust S, Balyani Y. Comprehensive Guideto GIS: ublishers Azad pyma, 2012; 145-146.
[16]. Noahgar A, Riahi F, Kamangar M. Determination of Suitable Areas of Flood Spreading Using Sustainable Groundwater Resources Approach (Case Study: Sarakhon Plain). Journal of Environmental Studies, 2016; 42 (1): 33-48. (In Persian).
[17]. Mahmoodi J, Qureshi Najafabadi S, Vafaeinejad A , Muridi A, Khazaei S. Potential Assessment of Groundwater Resources Using a Combined Approach to Particle Swarm Optimization Algorithm and Spatial Information System (Case Study: Mehran Plain, Ilam). Journal of Ecohydrology, 2017; 4 (4): 1213-1199. (In Persian).
[18]. Cimren E,Catay B, Budak E. Developement of selection system using AHP International Journal of Advanced Manufaturing Technology, 2007; 35 363-376.