[1]. Vafaei F, Harati AN. Strategic management in decision support system for coastal flood management. 2010; 4(1): 169-176.
[2]. Raghunath HM. Hydrology: principles, analysis and design. New Age International; 1997.
[3]. Weinmann PE, Laurenson EM. Approximate flood routing methods: A review. Journal of the Hydraulics Division. 1979;105(12):1521-1536.
[4]. Chow, Vente. Open channel hydraulics, Newyork;Macgraw-Hill book company. 1959.
[5]. SHAW, EM. Hydrology in Practice. T.J. Press (Pads tow) LTD , Cornwall, UK. 1994.
[6]. Yadav B, Perumal M, Bardossy A. Variable parameter McCarthy–Muskingum routing method considering lateral flow. Journal of Hydrology. 2015. 489-499.
[7]. Tsai CW. Flood routing in mild-sloped rivers—wave characteristics and downstream backwater effect. Journal of Hydrology. 2005; 308(1-4):151-167.
[8]. Farahani NN, Farzin S, Karami H. Flood routing by Kidney algorithm and Muskingum model. Natural Hazards. 2018:1-19.
[9]. Nagesh Kumar D, Janga Reddy M. Multipurpose reservoir operation using particle swarm optimization. Journal of Water Resources Planning and Management. 2007; 133(3):192-201.
[10]. Meraji, S. H. Optimum design of flood control systems by particle swarm optimization algorithm (Doctoral dissertation, M. Sc. thesis, Iran University of Science and Technology). 2004.
[11]. Afshar A, Kazemi H, Saadatpour M. Particle swarm optimization for automatic calibration of large scale water quality model (CE-QUAL-W2): Application to Karkheh Reservoir, Iran. Water resources management. 2011; 25(10):2613-2632.
[12]. Lu WZ, Fan HY, Leung AY, Wong JC. Analysis of pollutant levels in central Hong Kong applying neural network method with particle swarm optimization. Environmental monitoring and assessment. 2002;79(3):217-230.
[13]. Chau K. A split-step PSO algorithm in prediction of water quality pollution. International Symposium on Neural Networks. 2005; 1034-1039.
[14]. Chu HJ, Chang LC. Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. Journal of Hydrologic Engineering. 2009; 14(9):1024-1027.
[15]. Moghaddam A, Behmanesh J, Farsijani A. Parameters estimation for the new four-parameter nonlinear Muskingum model using the particle swarm optimization. Water resources management. 2016; 30(7):2143-2160.
[16]. Bazargan J, Norouzi H. Investigation the effect of using variable values for the parameters of the linear Muskingum method using the particle swarm algorithm (PSO). Water Resources Management. 2018; 32(14):4763-4777.
[17]. Abdolshahnejad, A. Comparison of different methods hydraulic and hydrologic in flood routing (Case Study: Part of Karoun river), M.Sc. Thesis, University of Tehran. 1997. 230 pp. [Persian].
[18]. Dehghani, M. The Efficiency Assessment of Flood Routing Methouds in Tidal Zohre River, M.Sc. Thesis, Tarbiat Modarres University. 2004. 104 pp. [Persian].
[19]. Ghasemieh, H. Investigation of Muskingum and Modified Att-Kin Methoud Efficiency in river Flood Routing (Case Study, Babolroud River), M.Sc. Thesis, University of Mazandaran. 2005. 136 pp. [Persian].
[20]. Barati, R. & Akbari, GM. Comparison of Flood Routing Hydrology Models in Rivers. Iranian Water Researches Journal, 2012. 105-114. [Persian].
[21]. Abbasizadeh, M. & Mahdavi. M. & Salajeghe. A. Evaluation of Flood Routing Methods Efficiency (Case Study: Dez River). 2010. 63-76. [Persian].
[22]. Manavi Amiri. S.M, & Malekian. A, & Shahedi. K, & Motamed Vaziri. B. Evaluation of Muskingum and Modified Att-Kin Methods Efficiency in Flood Routing (Case Study: Talar Watershed, Mazandaran
Province). 2013. 106-119. [Persian].
[23]. McCarthy GT. The unit hydrograph and flood routing, Conference of North Atlantic Division. US Army Corps of Engineers, New London, CT. US Engineering. 1938.
[24]. Hamedi, MH. Open Channel Hydraulics, Khaje Nasir University. Second edition. 2011. (In Persian).
[25]. Mahdavi, M. Applied hydrology. Tehran University. Second edition. 2013. [Persian].
[26]. Eberhart R, Kennedy J. A new optimizer using particle swarm theory.. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. 1995.39-43
[27]. Shi Y, Eberhart R. A modified particle swarm optimizer. In1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360) 1998. 69-73.
[28]. Di Cesare N, Chamoret D, Domaszewski M. A new hybrid PSO algorithm based on a stochastic Markov chain model. Advances in engineering software. 2015. 127-137.