[1]. Abedini M, Fathi M. Flood hazard zoning using network analysis process. Journal of Hydrogeomorphology.2015; 1(3): 99-120. [Persian]
[2]. Akgun A, Türk N. Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis.
Environmental Earth Sciences.2010; 61(3): 595- 611.
[4]. Ashouri M, Rezaeimoghaddam MH, Piry Z. Morphologic Change Assessment of Riverbed Before and after Dam Construction Using HEC RAS Model and GIS in Downstream of Satarkhan Dam. Physical Geography Research Quarterly. 2013; 45(1): 87-100. [Persian]
[5]. Van der Sande CJ, De Jong S M, De Roo A P J A. segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. International Journal of applied earth observation and geoinformation. 2003; 4(3):217-229.
[9]. Samanta S, Kumarpal D, Palsamanta B. Flood susceptibility analysis through remote sensing, GIS and frequency ratio model.
Applied Water Science. 2018; 8(66): 1-14.
[10]. Motevalli A, Vafakhah M. Flood hazard mapping using synthesis hydraulic and geomorphic properties at watershed scale. Stoch Environ Res Risk Assess. 2016; 30:1889-1900.
[11]. Yang Y C E, Ray PA, Brown C M, Khalil A F, Yu W H. Estimation of Flood Damage Functions for River Basin Planning: a Case Study in Bangladesh. Natural Hazards. 2015; 75(3): 2773-279.
[12]. Wu Y, Zhong P, Zhang Y, Xu B, Ma B, Yan K., Integrated flood risk assessment and zonation method: a case study in Huaihe River basin, China,
Natural Hazards. 2015; 78(1): 635-651.
[14]. Das S. Geographic information system and AHP-based flood hazard zonation of Vaitarna basin in Maharashtra India.
Arabian Journal of Geosciences. 2018; 11(576): 1-13.
[15].
Mishra K,
Sinha R. Flood risk assessment in the Kosi megafan using multi-criteria decision analysis: A hydro-geomorphic approach,
Geomorphology. 2020; 350:1-13.
[20]. Solaimani K, Habibnejad M. The role of hydro-climatic factors in flood occurrence of Nika watershed. Journal of Natural Resources. 2002; 55(1): 23-35. [Persian]
[21]. Solaimani K, Bashirgonbad M, Mousavi R, Khalighi Sh. Investigating the potential of flood production in watershed using HEC_HMS in Kasilian basin. Physical Geography Research. 2008; 65:51-60. [Persian]
[22]. Shaikhalishahi N, Jamali A, Hasanzadehnfoti M. Flood zoning using hydraulic model of river analysis (Case study: Manshad watershed - Yazd province). Geographical Space. 2016; 16(53): 77-96. [Persian]
[23]. Rostaimosavi R, Alizadehgorji R. Prepare a flood Nika watershed zoning map using the SCS-CN and GIS / RS models. Journal of Quantitative Geomorphological Research. 2017; 6(1): 108-118. [Persian]
[24]. Mahmudzadeh H, Bakoii M. Flood zoning using fuzzy logic (Case study: Sari city). Journal of Natural Environmental Hazards. 2018; 7(18): 51-68. [Persian]
[25]. Rad M, Vafakhah M, Qolamailfard M. Flood zoning using HEC-RAS hydrological model at the bottom of Khorramabad watershed. Journal of Natural Environmental Hazards. 2018; 7(6): 211-226 [Persian].
[26]. Rajabizaheh E, Aubzadeh A, Qamshi M. Investigation of floods in Khuzestan province during the water year 1397-1398 and providing strategies for controlling and managing it in the future. Journal of Eco hydrology. 2019; 6(4): 1069-1084. [Persian]
[29]. Iranian meteorological organization. The climate of Khuzestan province and precipitation data. Access date (2019/09/01).
http://www.irimo.ir. [Persian]
[30]. Meteorological Organization of Khuzestan Province. Access date (2019/09/01). khuzestanmet.ir. [Persian]
[31]. Campbell J, Wynne RH. Introduction to Remote Sensing, 5th ed. New York: The Guilford; 2011.
[32]. Richards JA, Xiuping J. Remote sensing Digital Image Analysis, An Introduction, 4th ed. Berlin: Springer; 2006.
[33]. Moahedi S, Hedarinaserabad B, Hashimiana K, Ranjbar F. Climate zoning of Khuzestan province. Journal of geographic space. 2012; 12(4): 64-73. [Persian]
[34]. Aminiparsa V, Yavari A, Nejadi A. Spatio-temporal analysis of land use/land cover pattern changes in Arasbaran Biosphere Reserve of Iran.
Modeling Earth Systems and Environment. 2016; 2(4): 1-13.
[36]. Dube T, Gumindoga W, Chawira M. Detection of land cover changes around LakeMutirikwi, Zimbabwe, based on traditional remote sensing image classification techniques. African Journal of Aquatic Science. 2014; 39(1): 89-95.
[37]. Mather P, Brandt T. Classification methods for remotely sensed Data. 2nd ed. London: Taylor& Francis; 2009.
[38]. Deng Y, Fan F, Chen R. Extraction and Analysis of Impervious Surfaces Based on a Spectral Un-Mixing Method Using Pearl River Delta of China Landsat TM/ETM+ Imagery from 1998 to 2008. journal of Sensors. 2012; 12: 1846-1862.
[40]. Gautam VK, Gaurav KP, Murugan P, Annadurai M. Assessment of Surface Water Dynamicsin Bangalore using WRI NDWI MNDWI Supervised Classification and K-T Transformation. Aquatic Procedia. 2014; 4:739-746
[41]. Ceccato P, Flasse S, Tarantola S, Jacquemond S, Gregoire JM. Detecting vegetation water content using reflectance in the optical domain. Remote Sensing of Environment. 2001; 77: 22-33.
[42]. Xu H. Modification of Normalized Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing. 2006; 27:3025-3033.
[43]. Zhang FF, Li J, Shen Q, Zhang B, Ye H, Wang SH, et al. Dynamic Threshold Selection for the Classification of Large Water Bodies within Landsat-8 OLI Water Index Images,
earth sciences.
Environmental sciences. 2016; 1:1- 18.
[44]. Zhai K, Wu X, Yuanwei Q, Du P. Comparison of surface water extraction performances of different classic water indices using OLI and TM imageries in different situations. journal of Geo-spatial Information Science. 2015; 18: 32-42
[45].
Yang J,
Du X. An enhanced water index in extracting water bodies from Landsat TM imagery.
Annals of GIS. 2017; 23(3):141-148
[46]. Darvishi SH, Solaimani K, Rashidpour M. The effect of vegetation index and urban characteristics on land temperature changes in Sanandaj city. Journal of RS and GIS for Natural Resources. 2019: 10(1): 17-35. [Persian]
[47]. Smits PC, Dellepiane SG, Schowengerdt RA. Quality assessment of image classification algorithms for land-cover mapping: a review and a proposal for a cost-based approach. International Journal of Remote Sensing. 1999; 20(8): 1461-1486.
[48]. Alavipanah K, Matenfar H, Rafieiemam A. Application of Information Technology in Earth Sciences (Digital Soil Science). 1th ed. Tehran: University of Tehran publications; 2008. [Persian]
[49]. Fatemi B, Rizaei E. Fundamentals of remote sensing. 2en ed. Tehran: Azadeh publications; 2010. [Persian]
[50]. Solaimani K, Darvishi Sh, Shokrian F. Analysis of agriculture drought using remote sensing index in Marivan city. Journal of RS and GIS for Natural Resources. 2019; 10(2): 15-33. [Persian]
[52]. Manandhar R, Odeh IOA, Ancev T. Improving the accuracy of land use and land
cover classification of Landsat data using post-classification enhancement. Remote sensing. 2009;1(3): 330-344.
[53]. Hishe S, Bewket W, Nyssen J, Lyimo J. Analyzing past land use land cover change and CA-Markov based future modeling in the Middle Suluh Valley in Northern Ethiopia. Geocarto International. 2020; 35(3): 225-255