استفاده از تصاویر سنجش از دور سنتینل 2 برای بهبود تفکیک‏ پذیری محصولات زراعی با بهره ‏گیری از روش‏ های هوش مصنوعی به‏ منظور مدیریت بهره ‏برداری آب از مخازن سدها

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه مهندسی نقشه برداری و اطلاعات مکانی، پردیس دانشکده ‏های فنی، دانشگاه تهران، تهران

2 دانشیار، گروه مهندسی نقشه ‏برداری و اطلاعات مکانی، پردیس دانشکده‏ های فنی، دانشگاه تهران، تهران‌

3 استادیار، گروه مهندسی عمران، دانشکدۀ فنی و مهندسی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران‌

چکیده

محدودیت منابع آبی همواره از موانع اصلی توسعۀ بخش کشاورزی به‏عنوان بستر اصلی نیل به خودکفایی مواد غذایی مطرح بوده است. یکی از کاربردهای مهم تصاویر سنجش از دور، در حوزۀ فعالیت‏های کشاورزی است. در تحقیق حاضر از تصاویر ماهوارۀ سنتینل 2 برای تفکیک محصولات کشاورزی در محدودۀ شهرستان ارومیه به‏صورت روش‏های مبتنی بر ورودی‏های چندزمانی استفاده شده است. به دلیل تغییرات طیفی محصولات طی دورۀ رشد، به‌کارگیری تصاویر چندزمانی مطابق با تقویم زراعی محصولات، نقش مهمی در تفکیک این محصولات ایفا می‏کند. در این طبقه‏بندی تمامی ورودی‏ها دارای تأثیر یکسان در طبقه‏بندی در نظر گرفته می‏شوند که این امر خلاف واقعیت است. بنابراین، به منظور افزایش دقت طبقه‏بندی و بهبود نتایج، به هر یک از ورودی‏های چندزمانی، وزن مناسبی باید اختصاص یابد که در پژوهش حاضر انتخاب وزن‏های بهینه برای تمام ورودی‏ها با بهره‏گیری از الگوریتم ژنتیک مورد توجه قرار گرفته است. بهینه کردن طبقه‏بندی تصاویر ماهواره‏ای به روش کمترین فاصله توسط الگوریتم ژنتیک به دو حالت انجام یافته است؛ در حالت نخست تأثیر تعداد نرون‏های لایۀ میانی و انتخاب پارامترهای بهینه برای شبکۀ عصبی و در حالت دوم، تأثیر ترتیب معرفی نمونه‏های آزمایشی بررسی شده است. در حالت نخست تعداد 4 تا 20 نرون برای لایۀ میانی و مقداری بین صفر و یک برای میزان آموزش و ضریب مومنتوم انتخاب و ارزیابی شده و در حالت دوم ترتیب‏های مختلفی از معرفی نمونه‏های آموزشی ارزیابی شده‏اند. نتایج نشان داد بهینه شدن ترتیب معرفی نمونه‏های آموزشی، موجب افزایش 5/4 درصدی در دقت محاسبات شده است. بنابراین، ترتیب معرفی نمونه‏های آزمایشی در مقایسه با سایر پارامترها، بیشترین تأثیر را در همگرایی شبکه و حصول به نتایج بهینه داشته است. همچنین، مقایسۀ دو طبقه‏بندی استاندارد و بهینه‌شده، نشان داد مقدار کاپا از 86 درصد در حالت استاندارد به مقدار 5/90 درصد در حالتی که ورودی‏ها به صورت بهینه وزن‏دهی شده‏اند، افزایش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Using Satellite Images the Sentinel-2 for Improving the Classification of Agricultural Products via Artificial Intelligence Methods to Manage the Reservoir Dams Operation

نویسندگان [English]

  • Pouya Ahmadi 1
  • Hossein Arefi 2
  • Nazila Kardan 3
1 M.Sc. Student, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran North Kargar Ave., Jalal Al. Ahmad Crossing
2 Associate Professor, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran North Kargar Ave., Jalal Al. Ahmad Crossing
3 Assistant Professor, Department of Civil Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
چکیده [English]

Water is one of the most important factors in the growth and development of human societies, where water resource limitations have always been one of the main barriers to agricultural development as a major basis for achieving food self-sufficiency. One of the main applications of satellite imagery is its utilization in the field of water resources management and agricultural activities, in which managers can benefit from it for studying cultivation levels, crop classification, crop estimation, and agricultural crisis forecasting. Generally, overall consumption estimation, water/irrigation management, and utilization of dams’ storage capacity are among the most important research topics. This study benefits from the Sentinel-2 satellite for classifying the agricultural crops based on the multi-temporal methods. Besides, four classification methods are adopted for classifying, namely, minimum distance, maximum likelihood, fuzzy, and neural network. Due to the spectral changes of goods during the growing period, using the multi-temporal methods based on the crop calendar can play a decisive role in the classifying process, such that the classification accuracy increases to 86 percent via the maximum likelihood and neural network methods. Moreover, the normalized Kappa increased to 90.5 percent, when the neural network method parameters are optimized. The results obtained from the simulation indicate that genetic algorithm is the best method for obtaining the optimal results. After selecting the optimized neural network parameters, the classification has been taken into account and observed that Alfalfa has the largest crop surface, while it requires a considerable amount of water and its demand is in a lower value. Wheat, Barely, and Potato considered to be the most sufficient crops, after an analysis based on water demand of the crops and the needs for each product. These crops should be cultivated in the closest location to the divergent water path of Shahrchaei Dam, resulting in lower water waste in the agricultural fields. As result, all Alfalfa cultivated grounds should be replaced with the mentioned products.

کلیدواژه‌ها [English]

  • Classification
  • Artificial Neural Network
  • Remote sensing
  • Optimization
  • Genetic algorithm
[1]. Boustani F, Mohammadi H. Studying productivity of and demand for water in sugar beet production in Eqlid district. Journal of Sugar Beet, 2007; 23(2): 185-196 (In Persian).
[2]. Chizari A, Ghasemi A. Application of mathematical programming in determining the optimal pattern of crop cultivation. Agriculture Economic and Development, 2009; 28(7): 61-76 (In Persian).
[3]. Feizizadeh B, Khedmatzadeh A, Nikjou MR. Micro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation. Journal of Applied Researches in Geographical Sciences, 2020; 18(48): 201-216.
[4]. Murakami T, Ogawa S, Ishitsuka N, Kumagai K, Saito G. Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan. International journal of remote sensing, 2001; 22(7): 1335-1348.
[5]. Quegan S, Thuy LT, Skriver H, Gomez-Dans J, Gonzalez-Sampedro MC, Hoekman DH. Crop classification with multi temporal polarimetric SAR data. Citeseer, 2003.
[6]. Rucha D, Dipanwita H, Viral AD, Manjunath KR, Vyas P. Crop monitoring and classification using multi temporalpolarimetric SAR (RISAT-1) data for cotton and groundnut crops of Gujarat. Journal of agrometeorology, 2017; 19(Special Issue): 171-178.
[7]. Solberg AHS, Jain AK, Taxt T. Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images. IEEE Transactions on Geoscience and Remote Sensing, 1994; 32(4): 768-778.
[8]. Chen KSH, Huang WP, Tsay DH, Amar F. Classification of multi frequency polarimetric SAR imagery using a dynamic learning neural network. IEEE Transactions on Geosciences and Remote Sensing, 1996; 34(3): 814-820.
[9]. Panigrahy S, Chakraborty M, Sharma SA, Kundu N, Ghose SC,  Pal M. Early estimation of rice area using temporal ERS-1 synthetic aperture radar dataذa case study for the Howrah and Hughly districts of West Bengal, India. International journal of remote sensing, 1997; 18(8): 1827-1833.
[10]. Gower ST, Kucharik CJ, Norman JM. Direct and indirect estimation of leaf area index, f (APAR), and net primary production of terrestrial ecosystems. Remote Sensing of Environment, 1999; 70(1): 29-51.
[11]. Aparicio N, Villegas D, Araus JL, Casadesús J, Royo C. Relationship between Growth Traits and Spectral Vegetation Indices in Durum Wheat. Crop Science, 2012; 42(5): 1547-1555.
[12]. Verhoeye J, Wulf RD. Land cover mapping at sub-pixel scales using linear optimization techniques. Remote Sensing of Environment, 2002; 79(1): 96-104.
[13]. Wang Q, Tenhunen JD. Vegetation mapping with multitemporal NDVI in North Eastern China transect (NECT). International Journal of Applied Earth Observation and Geoinformation, 2004; 6(1): 17-31.
[14]. McNairn H, Brisco B. The application of C-band polarimetric SAR for agriculture: a review. Canadian Journal of Remote Sensing, 2004; 30(3): 525-542.
[15]. Turker M, Arikan M. Sequential masking classification of multi-temporal Landsat 7 ETM+ images for field-based crop mapping in Karacabey, Turkey. International journal of remote sensing, 2005; 26(17): 3813-3830.
[16]. Verbeiren S, Eerens H, Piccard I, Bauwens I, Orshoven JV. Sub-pixel classification of SPOT-VEGETATION time series for the assessment of regional crop areas in Belgium. International Journal of Applied Earth Observation and Geoinformation, 2008; 10(4): 486-497.
 
[17]. Geipel J, Link J, Claupein W. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System. Remote Sens, 2014; 6(11): 10335-10355.
[18]. Feng Q, Liu J, Gong J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sens, 2015; 7: 1074-1094.
[19]. Ghazali M, Roozbahani A, Honar T, Mohammadi F. Ranking of scenarios for water allocation of Zayandeh Rud dam to different users using the expert multi attribute decision making models. Journal of Water and Irrigation Management, 2015; 5(1): 97-113.
[20]. Khodadadi SA, Yasi M, Monem MJ. Performance evaluation and optimization of water delivery schedule in the Zarinehroud irrigation network. Journal of Water and Irrigation Management, 2018; 7(1): 105-120.
[21]. Huo LZ, Boschetti L, Sparks AM. Object Based Classification of Forest Disturbance Types in the Conterminous United States. Remote Sensing, 2019; 11(5): 477-498.
[22]. Beisl U, Telaar J, Schonemrak MV. Atmospheric correction, Reflectance calibration and BRDF correction for ADS40 image data. The international archives of photogrammetric, Remote Sensing and information Sciences. Vol. XXXVII. Part B7, 2008.
[23]. Solaimani K, Shokrian F, Tamartash R, Banihashemi M. Landsat ETM+ based assessment of vegetation indices in highland environment. Journal of Advances in Developmental Research, 2011; 2(1): 5-13.
[24]. Prost C, Zerger A, Dare P. A multilayer feed-forward neural network for automatic classification of eucalyptus forests in airborne video imagery. International journal of remote sensing, 2005; 26(15): 3275-3293.
[25]. Zhuang X, Engel BA, Lozano-Garcia DF, Fernandez RN, Johannsen CJ. Optimization of training data required for neuro-classification. International journal of remote sensing, 1994; 15(16): 3271-3277.
[26]. Congalton RG. A review of assessing the accuracy of classifications of remotely sensed
data. Remote Sensing of Environment, 1991; 37(1): 35-46.