[1]. Boustani F, Mohammadi H. Studying productivity of and demand for water in sugar beet production in Eqlid district. Journal of Sugar Beet, 2007; 23(2): 185-196 (In Persian).
[2]. Chizari A, Ghasemi A. Application of mathematical programming in determining the optimal pattern of crop cultivation. Agriculture Economic and Development, 2009; 28(7): 61-76 (In Persian).
[3]. Feizizadeh B, Khedmatzadeh A, Nikjou MR. Micro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation. Journal of Applied Researches in Geographical Sciences, 2020; 18(48): 201-216.
[4]. Murakami T, Ogawa S, Ishitsuka N, Kumagai K, Saito G. Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan. International journal of remote sensing, 2001; 22(7): 1335-1348.
[6]. Rucha D, Dipanwita H, Viral AD, Manjunath KR,
Vyas P. Crop monitoring and classification using multi temporalpolarimetric SAR (RISAT-1) data for cotton and groundnut crops of Gujarat. Journal of agrometeorology, 2017; 19(Special Issue): 171-178.
[8]. Chen KSH, Huang WP, Tsay DH, Amar F. Classification of multi frequency polarimetric SAR imagery using a dynamic learning neural network. IEEE Transactions on Geosciences and Remote Sensing, 1996; 34(3): 814-820.
[9]. Panigrahy S,
Chakraborty M,
Sharma SA,
Kundu N,
Ghose SC,
Pal M. Early estimation of rice area using temporal ERS-1 synthetic aperture radar dataذa case study for the Howrah and Hughly districts of West Bengal, India. International journal of remote sensing, 1997; 18(8): 1827-1833.
[10]. Gower ST, Kucharik CJ, Norman JM. Direct and indirect estimation of leaf area index, f (APAR), and net primary production of terrestrial ecosystems. Remote Sensing of Environment, 1999; 70(1): 29-51.
[11]. Aparicio N, Villegas D, Araus JL, Casadesús J, Royo C. Relationship between Growth Traits and Spectral Vegetation Indices in Durum Wheat. Crop Science, 2012; 42(5): 1547-1555.
[12]. Verhoeye J, Wulf RD. Land cover mapping at sub-pixel scales using linear optimization techniques. Remote Sensing of Environment, 2002; 79(1): 96-104.
[13]. Wang Q, Tenhunen JD. Vegetation mapping with multitemporal NDVI in North Eastern China transect (NECT). International Journal of Applied Earth Observation and Geoinformation, 2004; 6(1): 17-31.
[14]. McNairn H, Brisco B. The application of C-band polarimetric SAR for agriculture: a review. Canadian Journal of Remote Sensing, 2004; 30(3): 525-542.
[15]. Turker M, Arikan M. Sequential masking classification of multi-temporal Landsat 7 ETM+ images for field-based crop mapping in Karacabey, Turkey. International journal of remote sensing, 2005; 26(17): 3813-3830.
[16]. Verbeiren S, Eerens H,
Piccard I,
Bauwens I,
Orshoven JV. Sub-pixel classification of SPOT-VEGETATION time series for the assessment of regional crop areas in Belgium. International Journal of Applied Earth Observation and Geoinformation, 2008; 10(4): 486-497.
[17]. Geipel J, Link J, Claupein W. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System. Remote Sens, 2014; 6(11): 10335-10355.
[18]. Feng Q, Liu J, Gong J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sens, 2015; 7: 1074-1094.
[19]. Ghazali M, Roozbahani A, Honar T, Mohammadi F. Ranking of scenarios for water allocation of Zayandeh Rud dam to different users using the expert multi attribute decision making models. Journal of Water and Irrigation Management, 2015; 5(1): 97-113.
[20]. Khodadadi SA, Yasi M, Monem MJ. Performance evaluation and optimization of water delivery schedule in the Zarinehroud irrigation network. Journal of Water and Irrigation Management, 2018; 7(1): 105-120.
[21]. Huo LZ, Boschetti L, Sparks AM. Object Based Classification of Forest Disturbance Types in the Conterminous United States. Remote Sensing, 2019; 11(5): 477-498.
[22]. Beisl U, Telaar J, Schonemrak MV. Atmospheric correction, Reflectance calibration and BRDF correction for ADS40 image data. The international archives of photogrammetric, Remote Sensing and information Sciences. Vol. XXXVII. Part B7, 2008.
[24]. Prost C, Zerger A, Dare P. A multilayer feed-forward neural network for automatic classification of eucalyptus forests in airborne video imagery. International journal of remote sensing, 2005; 26(15): 3275-3293.
[25]. Zhuang X,
Engel BA,
Lozano-Garcia DF,
Fernandez RN,
Johannsen CJ. Optimization of training data required for neuro-classification. International journal of remote sensing, 1994; 15(16): 3271-3277.
[26]. Congalton RG. A review of assessing the accuracy of classifications of remotely sensed
data. Remote Sensing of Environment, 1991; 37(1): 35-46.