[1]. Chen Z., Saito S., Kanaii, Y., Wei, T., Li L, Yao and et al. Low concentration of heavy metals in the Yangtze: Estuarine sediments, 2004; china Adiluting.
[2]. Gupta, A., Gupta, S., and Patil., R. Statistical analyses of coastal water quality for a port and harbor region in India: Environmental Monitoring and Assessment, 2009; 102:179–200.
[3]. Moattar F., Javadi E., Karbassi A., Monavvari SM. Surveying on decontamination Effect of Water Lily (Nymphaea Alba) for Heavy Metals (Pb, Cd and Mn) in Liquid Solution. Human and Environment. 2011; Vol 9, Issue 16: 41-50. (Persian).
[4]. Nadiri, A.A., Sadeghi Aghdam, F., Khatibi, R., Asghari Moghaddam, A. The problem of identifying arsenic anomalies in the basin of Sahand dam through risk-based soft modelling. Science of the total environment. 2017; 613-614: 693-706.
[5]. Nadiri, A.A., Asghari Moghaddam, A., Tsai, F., Fijani, E. Hydrogeochemical analysis for Tasuj plain aquifer, Iran. J. Earth Syst. Sci. 2013; 122, No. 4: 1091-1105.
[6]. Forte, G., Petrucci, F., Bocca, B. Metal allergens of growing singnificance epidemiology immunotoxicology strategies for testing and prevention. inflamm allergy drug targets. 2008; 7: 145-162.
[7]. Thyssen, J. P., Menne, T. Metal allergy a review on exposures penetration genetics prevalence and clinical implication. Chem Res Toxicol, 2009; 23, 309-318.
[8]. Lee S., Moon JW., Moon HS. heavy metals in the bed and suspended sediments of Anyang River: Korea. Implications for water quality, Environmental Geochemistry and health, 2003.
[9]. Ansaripour A H., Ebrahimi K., Omid M H. A Mathematical Model for River Flow Assimilation: A Case Study of Pasikhan River, Iran. Journal of Agricultural Engineering Research. 2013; Vol.14; No.2; P:31-42. (Persian).
[10]. Hosseini Y., Kashkouli H., Azari A., Boroumandnasab S., Moazeb H. Calculating the purification capacity of a part of Karkheh river to enter the municipal sewage and comparing it with the current situation of the river. First Conference and Specialized Exhibition of Environmental Engineering, Tehran. 2006. (Persian).
[11]. Maree J.P., Du Plessis P., Van der Walt C.J. Treatment of acid effluents with limestone instead of lime. Water Sci. Technol. 1992; 26, 345e355.
[12]. Mahjoubi., R. Study of self-purification Ilginechay and Zarankabchay Rivers and tailing dam at the vicinity of the Sungun mine. Master Thesis in Environmental Geology, Faculty of Natural Science, University of Tabriz; 2019. (Persian).
[13]. Wei G.L., Yang Z.F., Cui B.S., Li B., Chen H., Bai JH., Dong SK. Impact of dam construction on water Quality and water self-purification capacity of the Lancing river, china, water resource management. 2009; 23: 1763 – 1780.
[14]. Mollapiri H. Investigation of surface and groundwater pollution to heavy metals in the area of copper-molybdenum Sungun mine. Master Thesis in Environmental Geology, Faculty of Natural Science, University of Tabriz; 2013. (Persian).
[15]. Azizi B. Providing solutions for treatment and purification of acidic mineral drainage in Pakhir valley, Songun mine. Master Thesis in
Environmental Geology, Faculty of Natural Science, University of Tabriz; 2015. (Persian).
[16]. Food and Agriculture Organization of the United Nations (FAO).
[17]. Reza R., and Singh G. Heavy metal contamination and its indexing approach for river water. International Journal of Environmental Science and Technology. 2010; 7(4), 785-792.
[18]. Ameh EG., Akpah FA. Heavy metal pollution indexing and multivariate statistical evalution of hydrogechemistri of river Povpov in itakpe irob-ore mining area, kogi state, Nigeria. Advancesin Applied Science Research. 2011; 2(1):33-46.
[19]. Aghili S. Investigation of the concentration of heavy elements in the soil and sedimentation of the Molibden Sungun copper region. Master Thesis in Environmental Geology, Faculty of Natural Science, University of Tabriz; 2014. (Persian).