Determining the Effect of Intensity and Duration of Drought on the Lag Time Between Meteorological and Hydrological Drought and Examining Uncertainties (Case Study: Anzali Basin)

Document Type : Research Article

Authors

1 Graduated Ph.D. Student, Water Engineering Department, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran

2 Professor of Water Engineering Department, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran

Abstract

There is a deficiency in the number and depth of researches regarding the significant association between meteorological and hydrological droughts, and investigating the effects of uncertainties in the lag time between the two phases of the droughts. In this study, the lag time between the two phases of meteorological and hydrological droughts was investigated based on the available observations, using frequency-counting methods for the Anzali wetland basin with 9 meteorological and 20 hydrometric stations having recorded data from 1985 to 2015. Due to the fact that in the 30-year observation period, the possibility of severe droughts is low, to generate unobserved meteorological drought conditions of varying magnitude, continuity, and intensity, using the Monte Carlo method artificial rainfall was simulated. The SWAT water balance model was employed to generate the hydrological drought situations for different meteorological drought scenarios. The effect of the persistence and severity of meteorological drought on the lag time was investigated using the statistical technique of cross-correlation matrices. The results showed that an increase in meteorological drought duration increases the hydrological drought duration while an increase in the drought intensity reduces the lag time between the two phases of the droughts. The confidence interval of the lag time between meteorological and hydrological droughts showed that there is a chance of 70% to have a lag time of one month or less between the two phases of the droughts.

Keywords


[1]. Gholami Sh, Nasiri M. Simulation of Atrak river flow using the SWAT model, Case study: Maraveh Tappeh watershed in Golestan province. Journal of Watershed Management Research. 2014; 2(7): 126-135. [Persian]
[2]. Razi F, Shokouhi A R. Determining and Estimating the Lag time between Meteorological and Hydrological Drought Using a Water Balance Model. Journal of Watershed Management Research. 2020; 12(3): 712-724. [Persian]
[3]. Hosseini M, Mokarian Z. Investigation and estimation of groundwater flow of the Gol Gol basin using SWAT. Journal of Watershed Management Research. 2016; 8(1): 80-92. [Persian]
[4]. Vaghefi S A, Mousavi S J, Abbaspour K C, Srinivasan R, Arnold J R. Integration of hydrologic and water allocation models in basin-scale water resources management considering crop pattern and climate change: Karkheh River Basin in Iran. Regional Environmental Change. 2015; 15(3): 475-484.
[5]. Vilaysane B, Takara K, Luo P, Akkharath I, Duan W. Hydrological stream flow modeling for calibration and uncertainty analysis using SWAT model in the Xedone River Basin, Lao PDR. Procedia Environmental Sciences. 2015; 28: 380-390.
[6]. Abbaspour K C, Rouholahnejad E, Vaghefi S, Srinivasan R, Yang H, Klove B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology. 2015; 524: 733-752.
[7]. Adeniyi G, Bolaji F S, Adebayo W S, Daramola M O. Validation of SWAT model for prediction of water yield and water balance: case study of the upstream catchment of Jebba dam in Nigeria. International journal of civil and environmental engineering. 2014; 8(2): 264-270.
[8]. Shawul A A, Alamirew T, Dinka M O. Calibration and validation of SWAT model and estimation of water balance components of Shaya mountainous watershed, southeastern Ethiopia. Hydrology and Earth system sciences. 2013; 10: 13955-13978.
[9]. Mohammad S, Naseri F, Nazaripour H. Investigating the Temporal Changes and the Effect of Meteorological Drought on Groundwater Resources of Kerman Plain using Standard Precipitation (SPI) and Groundwater Resources (GRI) indices. 2018; 5(1) 11-22. [Persian]
[10]. Shafiei M, Raeini-Sarjaz M. Assessment of the Impact of Meteorological Drought and Wetness Trends on the Parishan Lake Water Level Decline. Journal of Watershed Management Research. 2015; 6(12) 118-126. [Persian]
[11]. Kooshki R, Rahimi M, Amiri M, Mohamadi M, Dastoorani J. Investigating the Relationship between Meteorological and Hydrological Drought in Karkheh Catchment Area. 2017; 4(3) 687-698. [Persian]
Volume 7, Issue 4
January 2021
Pages 843-854
  • Receive Date: 10 April 2020
  • Revise Date: 17 August 2020
  • Accept Date: 17 August 2020
  • First Publish Date: 01 December 2020
  • Publish Date: 21 December 2020