[1]. Brierley, G. J. and Fryirs, K. A. Geomorphology and River Management. Malden, Mass. : s.n., 2005, Blackwell Publ., p. 398.
[2]. Comiti, F., Cadol, D. and Wohl, E. Flow regimes, bed morphology,and flow resistance in self-formed step-pool channels. s.l. : Water Resour.Res., 2009, Vols. W04424, doi:10.1029/2008WR007259., p. 45.
[3]. Hager, W. H. Energy Dissipators and Hydraulic Jump, Kluwer Acad. Publ. Netherlands. : Dordrecht, 1991.
[4]. Harbaugh, A. W. Geological Survey modular ground-water model—The ground-water flow process. U.S. : s.n., 2005, U.S. Geol. Surv. Tech. Methods, Vols. 6-A16, p. 253. MODFLOW–2005.
[5]. Knighton, D. Fluvial Forms & Processes: A New Perspective. New York : s.n., 1998, Oxford Univ. Press, p. 383.
[6]. Tonina, D. Interaction between river morphology and intra-gravel flow paths within the hyporheic zone. s.l. : Unpublished Ph.D. dissertation, 2005.
[7]. Tsutsumi, D. and Laronne, J. B. Gravel-Bed Rivers: Process and Disasters. [ed.] Jonathan B. Laronne Daizo Tsutsumi. 2017.
[8]. Kasahara, T. and Hill, A. R. Hyporheic exchange flows induced by constructed riffles and steps in lowland streams in southern Ontario, Canada. s.l. : Hydrol. Proc., 2006, pp. 20, 4287–4305.
[9]. Crispell, J. K. and Endreny, T. A. Hyporheic exchange flow around constructed in-channel structures and implications for restoration design. s.l. : Hydrol. Proc., 2009, pp. 23(8), 1158– 1168.
[10]. Harvey, J. W. and Bencala, K. E. The effect of streambed topography on surface-subsurface water exchange in mountain catchments. 1993, Water Resour. Res., pp. 29(1), 89– 98.
[11]. Lautz, L. K. and Siegel, D. I. Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D. s.l. : Adv. Water Resour., 2006, pp. 29, 1618–1633.
[12]. Packman, A., Salehin, M. and Zaramella, M. Hyporheic exchange with gravel beds: Basic hydrodynamic interactions and bedform-induced advective flows. s.l. : J. Hydraul. Eng., 2004. pp. 130(7), 647– 656.
[13]. Thibodeaux, L. J. and Boyle, J. D. Bedform-generated convective transport in bottom sediment. s.l. : Nature, 1987, pp. 325(22), 341–343.
[14]. Tonina, D. and Buffington, J. M. Hyporheic exchange in gravel bed rivers with pool-riffle morphology: Laboratory experiments and threedimensional modeling. W01421, , s.l. : Water Resour. Res., 2007, p. 43. doi:10.1029/2005WR004328.
[15]. Valle´, B. L. and Pasternack, G. B. Submerged and unsubmerged natural hydraulic jumps in a bedrock step-pool mountain channel. s.l. : Geomorphology, 2006, pp. 82(1 –2), 146–159.
[16]. Wilcox, A. C. and Wohl, E. E. Field measurements of three-dimensional hydraulics in a step-pool channel. s.l. : Geomorphology, 2007, pp. 83(3– 4),215– 231.
[17]. Wondzell, S. M. Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon. USA : Hydrol. Proc., 2006, pp. 20(2), 267– 287.
[18]. onina, D. and Buffington, J. M. Hyporheic Exchange in Mountain Rivers I : Mechanics and Environmental Effects. Ts.l. : Geogr. Compass, 2009, pp. 3, 1–24.
[19]. Nagaoka, H. and Ohgaki, S. Mass transfer mechanisms in a porous riverbed. 1990, Water Res, pp. 24(4), 417–425.
[20]. O’Connor, B. L. and Harvey, J. W. Scaling hyporheic exchange and its influence on biogeochemical reactions in aquatic ecosystems. 2008, Water Resour. Res, Vols. W12423,, p. 44. doi:10.1029/2008WR007160.
[21]. Kasahara, T. and Wondzell, S. M. s.l.Geomorphic controls on hyporheic exchange flow in mountain streams. : Water Resour. Res., 2003, pp. 39(1),1005,. doi:10.1029/2002WR001386.
[22]. Boulton, A. J.; Findlay, S.; Marmonier, P.; Stanley, E. H.; Valett, H. M.;.The functional significance of the hyporheic zone in streams and rivers. 1998, Ann. Rev. Ecol. Syst., pp. 29, 59– 81.
[23]. Trauth, N.; Schmidt, C.; Vieweg, M.; Oswald, S. E. Hydraulic controls of ināstream gravel bar hyporheic exchange and reactions. 2015, Fleckenstein JHJWRR, Vol. 51(4), pp. 2243-63.
[24]. Elliott, A. H. and Brooks, N. H. Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments. 1997a, Water Resour. Res, pp. 33(1), 137– 151. doi:10.1029/96WR02783.
[25]. Buffington, J. M. and Tonina, D. Hyporheic Exchange in Mountain Rivers II : Effects of Channel Morphology on Mechanics, Scales, and Rates of Exchange. s.l. : Geogr. Compass, 2009, pp. 3, 1 –25.
[26]. Chanson, H. Current knowledge in hydraulic jumps and related phenomena. s.l. : A survey of experimental results, Eur. J. Mech. B., Fluids, 2009, pp. 28(2), 191– 210.
[27]. Hester, E. T. and Doyle, M. W. In-stream geomorphic structures as drivers of hyporheic exchange. 2008, Water Resour. Res, Vols. W03417,, p. 44. doi:10.1029/2006WR005810.
[28]. Poole, G. C. Stream hydrogeomorphology as a physical science basis for advances in stream ecology. 2010, J. N. Am. Benthol. Soc, pp. 29(1), 12– 25.
[29]. Comiti, F. and Lenzi, M. A. Dimensions of standing waves at steps mountain rivers. s.l. : Water Resour. Res., 2006, Vols. W03411, , p. 42. doi:10.1029/2004WR003898.
[30]. Endreny, T., Lautz, L. and Siegel, D. I. Hyporheic flow path response to hydraulic jumps at river steps: Flume and hydrodynamic models. February 12, 2011, Water Resour. Res, Vols. 47, W02517. doi:10.1029/2009WR008631.
[31]. Jamali, S and Dehghani, A.A. laboratory study on the action of surface and subsurface water in the middle sedimentary ridge. 2019, J. Echo Hydrology, Vol. 6(2), pp. 323-339. (In Persian).
[32]. Lautz, L. K. and Fanelli, R. M. Seasonal biogeochemical hotspots in the streambed around restoration structures. s.l. : Biogeochemistry, 2008, pp. 91(5),85– 104.
[33]. Marzadri A, Tonina D, Bellin A, Vignoli G, Tubino M. Semianalytical analysis of hyporheic
flow induced by alternate bars.: Water Resour. Res., 2010, Vols. 46, W07531. doi:10.1029/2009WR008285.
[34]. Movahedi, N; Dehghani, A.A; Trat, N; Meftah Halqi, M. Laboratory and numerical study of hyperic exchange in the presence of pool and riffle bed form. 2019, J. Echo Hydrology, Vol. 6(1), pp. 191-204. (In persian).
[35]. Movahedi, N.; Dehghani, A.A.; Schmidt, C.; Trat, N.; Pasternack, G.B.; Stewardsone, M.J.; Meeftah Halghi, M. Hyporheic exchanges due to channel bed and width undulations. 2021, Water res, Vol. 149(2), p. 103857. doi.org/10.1016/j.advwatres.2021.103857.
[36]. Kaser, D. H.; Binley, A.; Heathwaite, A. L.; Krause, S. Spatiotemporal variations of hyporheic flow in a riffle-step-pool sequence. s.l. : Hydrol. Proc., 2009, pp. 23(15), 2138–2149.