Bagheri-Gavkosh, M., Hosseini, S. M., Ataie-Ashtiani, B., Sohani, Y., Ebrahimian, H., Morovat, F., & Ashrafi, S. (2021). Land subsidence: A global challenge. Science of The Total Environment, 778, 146193. https://doi.org/10.1016/J.SCITOTENV.2021.146193
Ekici, A., Lee, H., Lawrence, D. M., Swenson, S. C., & Prigent, C. (2019). Ground subsidence effects on simulating dynamic high-latitude surface inundation under permafrost thaw using CLM5. Geoscientific Model Development, 12(12), 5291–5300. https://doi.org/10.5194/GMD-12-5291-2019
Gallardo, A. H., Marui, A., Takeda, S., & Okuda, F. (2009). Groundwater supply under land subsidence constrains in the Nobi Plain. Geosciences Journal, 13(2), 151–159. https://doi.org/10.1007/S12303-009-0014-4
Giani, G., Orsatti, S., Peter, C., & Rocca, V. (2018). A Coupled Fluid Flow—Geomechanical Approach for Subsidence Numerical Simulation. Energies 2018, Vol. 11, Page 1804, 11(7), 1804. https://doi.org/10.3390/EN11071804
Jafari, F., Javadi, S., Golmohammadi, G., Karimi, N., & Mohammadi, K. (2016). Numerical simulation of groundwater flow and aquifer-system compaction using simulation and InSAR technique: Saveh basin, Iran. Environmental Earth Sciences, 75(9), 1–10. https://doi.org/10.1007/S12665-016-5654-X/METRICS
khajehali, M., Safavi, H. R., & Iran Pour, S. (2023). Evaluation of management scenarios for land subsidence reduction and groundwater rehabilitation in Damane-Daran plain, Iran. Groundwater for Sustainable Development, 23, 100995. https://doi.org/10.1016/J.GSD.2023.100995
Liu, R., Zhao, Y., Cao, G., Wang, Q., Ma, M., Li, E., & Deng, H. (2022). Threat of land subsidence to the groundwater supply capacity of a multi-layer aquifer system. Journal of Hydrology: Regional Studies, 44, 101240. https://doi.org/10.1016/J.EJRH.2022.101240
Mahmoudpour, M., Khamehchiyan, M., Nikudel, M. R., & Ghassemi, M. R. (2016). Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran. Engineering Geology, 201, 6–28. https://doi.org/10.1016/J.ENGGEO.2015.12.004
Memarian Sorkhabi, O., Kurdpour, I., & Esmaeili Sarteshnizi, R. (2022). Land subsidence and groundwater storage investigation with multi sensor and extended Kalman filter. Groundwater for Sustainable Development, 19, 100859. https://doi.org/10.1016/J.GSD.2022.100859
Moghaddam, H. K., Moghaddam, H. K., Kivi, Z. R., Bahreinimotlagh, M., & Alizadeh, M. J. (2019). Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels. Groundwater for Sustainable Development, 9(June), 100237. https://doi.org/10.1016/j.gsd.2019.100237
Pardo, J. M., Lozano, A., Herrera, G., Mulas, J., & Rodríguez, Á. (2013). Instrumental monitoring of the subsidence due to groundwater withdrawal in the city of Murcia (Spain). Environmental Earth Sciences, 70(5), 1957–1963. https://doi.org/10.1007/S12665-013-2710-7/METRICS
Pradhan, B., Abokharima, M. H., Jebur, M. N., & Tehrany, M. S. (2014). Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Natural Hazards, 73(2), 1019–1042. https://doi.org/10.1007/S11069-014-1128-1/METRICS
Shen, J., Wu, H., & Zhang, Y. (2017). Subsidence estimation of breakwater built on loosely deposited sandy seabed foundation: Elastic model or elasto-plastic model. International Journal of Naval Architecture and Ocean Engineering, 9(4), 418–428. https://doi.org/10.1016/J.IJNAOE.2016.11.006
Yu, H., Gong, H., Chen, B., Liu, K., & Gao, M. (2020). Analysis of the influence of groundwater on land subsidence in Beijing based on the geographical weighted regression (GWR) model. Science of The Total Environment, 738, 139405. https://doi.org/10.1016/J.SCITOTENV.2020.139405