Aalem, H., Fallahi, M., & Farmanieh, S. (2019). Estimating Runoff Using SCS - CN Based On GIS: A Case Study (Shirvan, Bojnord, Faruj, Safiabad and Meshkan Cities). New findings in applied geology, 13(26), 156-16. (In Persian)
Abareshi, F., Meftah Halghi, M., Sanikhani, H., & Dehghani, A.A. (2014). Comparison of three intelligence techniques for predicting water table depth fluctuations (Case study: Zarringol plain). Journal of Water and Soil Conservation Research, 21(1), 163-180. (In Persian)
Cortes, C., & Vapnik, V. (1995). Support-vector network, Mach. Learn, 20: 273–297.
Dogani, A., Dourandish, A., & Ghorbani, M. (2020). Ranking of resilience indicators of Mashhad plain to groundwater resources reduction by Bayesian best-worst method. Iranian Journal of Water and Irrigation Management, 10(2), 301–316.
Fallahi, M.R., Varvani, H., & Golian, S. (2012). Precipitation prediction using tree regression model to flood control. Fifth National Conference on Watershed Management and Soil and Water Resources Management. Kerman, Iran. (In Persian)
Fallahzade, M., Rezaei, P., Eslamian, S., & Abbasi, A. (2019). Relationship of Drought and Teleconnection Patterns; Case Study of Qara-Qom Basin. Geographical Researches Quarterly Journal, 34(2), 153-164. (In Persian)
Jabaalbarezi, B., & Malekian, A. (2019). Comparison of the performance of artificial neural networks and gene expression to predict the groundwater level in arid and semi-arid areas (Case study: Jiroft plain). Iranian Journal of Range and Desert Research, 26(2), 292-301. (In Persian)
Khalili Naft Chali, A., Shahidi, A., & Khashei Siuki, A. (2017). Comparison of Lazy Algorithms and M5 Model to Estimate Groundwater Level (Case Study: Plain Neyshabur). J. Water and Soil Sci, 21(3), 15-26. (In Persian)
Khashei Siuki, A., Ghahraman., B., &. Kouchakzadeh, M. (2013). Comparison of ANN, ANFIS and Regression Models to Estimate Groundwater level of Neyshaboor Aquifer. Iranian Journal of lrrigation and Drainage, 1(7), 10-22. (In Persian)
Khatibi, R., Ghorbani, M.A., Hasanpour Kashani, M., & Kisi, O. (2011). Comparison of three artificial intelligence techniques for discharge routing. Journal of Hydrology, 403(3 -4), 201 -212.
Milan, S.G., Roozbahani, A., & Banihabib, M.E. (2018). Fuzzy optimization model and fuzzy inference system for conjunctive use of surface and groundwater resources. Journal of Hydrology, 566, 421-434.
Misaghi, F., & Mohammadi, K. (2006). Zoning of rainfall data using classical statistical and geostatistical methods and comparison with artificial neural networks. Scientific Journal of Agriculture, 29(4), 1-13. (In Persian)
Nahrin, F., Sattari, M. T., & Bigzali, N. (2013). Comparison of suspended load estimation using two methods: sediment gauge curve and M5 tree model (Case study: Liqvan Chay River). 12th Iranian Hydraulic Conference. (In Persian)
Pham, Q. B., Kumar, M., Di Nunno, F., Elbeltagi, A., Granata, F., Islam, A.R.M.T., Talukdar, S., Nguyen, X.C., Ahmed, A.N., & Anh, D.T. (2022). Groundwater level prediction using machine learning algorithms in a drought-prone area. Neural Computing and Applications, 34(13): 10751-10773.
Piri, H., Mobaraki, M. & Siasar, Saleh. (2023). Temporal and spatial modeling of groundwater level in Bushehr plain using artificial intelligence and geostatistic. Journal Watershed Management Research, 13(26), 58-68. (In Persian)
Poursalehi, F., KhasheiSiuki, A., & Hashemi, S. R. (2022). Investigating the performance of the random forest algorithm in predicting water table fluctuations in comparison with two decision tree models and artificial neural network in the Birjand plain aquifer. Ecohydrology, 8(4), 961-974. (In Persian)
Rajaee, T., & Ebrahimi, H. (2016). Application of wavelet neural network model for forecasting groundwater level time series with non-stationary and nonlinear characteristics. Journal of Water and Soil Conservation, 22(5), 99- 115. (In Persian)
Rostaminezhad
Dolatabad, H., Shahabi, S., & Madadi, M.R. (2023). Evaluation of the efficiency of decision tree in combination with wavelet transform for predicting groundwater level fluctuations in Kerman Baghin Plain.
Iranian Journal of Irrigation and Drainage. 17:3 (99), 413-427. (In Persian)
Samani, J.M., Tahmasbi, A., & Tahmasbi Sarvestani, Z. (2021). Water Resources Management and Sustainable Development. Infrastructure Studies Office, Volume 22, Serial Number 7374. (In Persian)
Suykens, J.A.K., Gestel, T.V., Barbanter, J.D., Moor, B.D., & Vandewalle, J.) 2002). Least squares support vector machines. World Scientific Pub. Co. Inc. ISBN: 978-981-277-665-5. 308 Pages.
Vadiati, M., Rajabi Yami, Z., Eskandari, E., Nakhaei, M., & Kisi, O. (2022). Application of artificial intelligence models for prediction of groundwater level fluctuations: Case study (Tehran-Karaj alluvial aquifer). Environmental Monitoring and Assessment, 194(9), 619.
Wang, X., Liu, T., Zheng, X., Peng, H., Xin, J., & Zhang., B. (2018). Short‑term prediction of groundwater level using improved random forest regression with a combination of random features. Applied Water Science, 8(5): 1–12.
Wei, A., Chen, Y., Li, D., Zhang, X., Wu, T., & Li, H. (2022). Prediction of groundwater level using the hybrid model combining wavelet transform and machine learning algorithms. Earth Science Informatics, 15(3), 1951-1962.
Yang, Z.P., Lu, W.X., Long, Y.Q., & Li, P. 2009. Application and comparison of two prediction models for groundwater levels: A case study in Western Jilin Province. China. Journal Arid Environ, 73, 487-492.
Zarei, M., Ghazavi, R., Abdollahi, KH., Ranzi, R., Ramesh, S.V.T., & Barontini, S. (2024). Spatiotemporal variation of water balance components in Mashhad catchment, Iran:Investigating the impact of changes in climatic data and land use. Water Supply, 24(2), 397-415. doi: 10.2166/ws.018