ارزیابی یک شاخص خشکسالی ترکیبی جدید مبتنی بر داده‏های سنجش از دوری (RCDI) در محدودۀ ایران مرکزی

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکدۀ منابع طبیعی، دانشگاه یزد

2 دانشیار دانشکدۀ منابع طبیعی، دانشگاه یزد

3 استادیار دانشکده منابع طبیعی، دانشگاه یزد

4 استادیار گروه مهندسی آب دانشگاه گیلان

چکیده

نخستین گام در هر سیستم مدیریت خشکسالی پایش وضعیت و سیر تکاملی خشکسالی است. این تحقیق روشی جدید برای پایش سیر تکاملی و شدت خشکسالی با شاخص خشکسالی ترکیبی مبتنی بر داده‏های سنجش از دوری (RCDI) ارائه می‏دهد. شاخص حاضر بر‌اساس این واقعیت استوار است که خشکسالی پدیده‌ای طبیعی است که به‌وسیلۀ ترکیبی از فاکتورهای مختلف از قبیل کمبود در مقدار بارش، تدوام بارندگی‏های کمتر از متوسط در طولانی‌مدت، دمای بیش از حد نرمال و خصوصیات مربوط به رطوبت خاک ایجاد می‏شود. سه منبع دادۀ استفاده‌شده در شاخص RCDI شامل داده‏های بارندگی، دما و پوشش گیاهی است. در تحقیق حاضر، از داده‏های سنجش از دوری TRMM و MODIS برای تهیۀ داده‏های مورد نیاز شاخص RCDI در محدودۀ ایران مرکزی به‌منظور تهیۀ نقشۀ توزیع مکانی خشکسالی طی دورۀ آماری 2001‌ـ 2004 استفاده شده است. ارزیابی دقت شاخص خشکسالی ترکیبی مبتنی بر داده‏های ماهواره‏‏‏‏‏‏ای با استفاده از معیارهای ارزیابی R و RMSE در سطح اطمینان 95 درصد و بر‌اساس مقایسه با مقادیر رطوبت خاک اندازه‏گیری‏شده در50 ایستگاه سینوپتیک انجام گرفته است. نتایج به‌دست‌آمده از بررسی معیارهای ارزیابی نشان داد که شدت خشکسالی برآورد‌شده به‌وسیلۀ شاخص RCDI در انطباق با مقادیر رطوبت خاک اندازه‏گیری‌شده به‌طور متوسط ضریب همبستگی معنا‏دار (61/0) و کمترین خطای برآوردی (98/1) داشته است. از این‌رو، شاخص خشکسالی RCDI به‌خوبی می‏تواند در سیستم‏های هشدار سریع خشکسالی استفاده شود.
 

 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating a new combined drought index based on remote sensing data (RCDI) in Central Iran

نویسندگان [English]

  • Yaghoub Niazi 1
  • Ali Talebi 2
  • Mohammad Hossein Mokhtari 3
  • Majid Vazifedoust 4
1 PhD Candidate of Watershed Management Engineering, Faculty of Natural Resources, Yazd University
3 Faculty of Natural Resources, Yazd University
4 3Water Engineering Department, Guilan University
چکیده [English]

Monitoring and evolution of drought is the first step in any drought management system. In this study, evaluation of a new indexa new method is provided to monitor the severity of drought with Remote Sensing Combined Drought Index (RCDI). The index is based on the fact that drought is a natural phenomenon caused by a combination of various factors such as a shortage in the amount of precipitation, less than the average long-term rainfall, temperature higher than normal and the properties of the soil moisture. The new index is a statistical index comparing the present hydrometeorological conditions with the long-term average characteristics in the same interest period within the year. Three data sources used in the RCDI index includes rainfall, temperature and vegetation data. In the present study, remote sensing data of TRMM and MODIS are used to provide the required data of RCDI index in central Iran for mapping the spatial distribution of drought over the period 2001-2004. Accuracy of the RCDI index based on satellite data carried out using the evaluation criteria of R and RMSE compared with soil moisture values based on monthly data of 50 synoptic stations in 95% confidence levels. The results of the evaluation criteria showed that drought severity index calculated by the RCDI index in accordance with soil moisture values had the significant correlation (0.61) and the lowest estimation error (1.98). Thus, a RCDI index could well use in drought early warning systems.
 
 
 
 

کلیدواژه‌ها [English]

  • Drought Monitoring
  • Combined Drought Index
  • remote sensing
  • Satellite data
  • soil moisture
  • Central Iran
 
 [2]. Balint Z, Mutua FM, Muchiri P, Omuto CT. Monitoring Drought with the Combined Drought Index in Kenya. Journal of Developments in Earth Surface Processes. 2013; Vol. 16. pp. 341-356.
[3]. Balint Z, Mutua FM, Muchiri P. Drought Monitoring with the Combined Drought Index. Methodology and Software. FAO-SWALIM Nairobi, Kenya. 2011; PP. 1-28.
[7]. Gommes R, Petrassi F. Rainfall Variability and Drought in Sub-Saharan Africa Since 1960. Agrometeorology Series Working Paper No. 9. Food and Agriculture Organization, Rome, Italy; 1994.
[8]. Guttman N. Comparing the Palmer Drought Index and the Standardized Precipitation Index. J. of Am Water Resources Association. 1998; 34, PP.113-121.
[9]. Hardy J. Climate Change, Causes, Effects and Solutions. John Wiley Sons. 2003; Ltd. pp. 39.
[10]. Heim RR. A Review of Twentieth-century Drought Indices Used in United States, Bulletin of the American Meteorological Society. 2002; 84: 1149-1165.
[11]. Hellden U, Christian T. Regional Desertification: a Global Synthesis. Global and Planetry Change. 2008; Vol. 64, No. 3-4, PP. 169-176.
[12]. Herweijer C, Seager, R.The global footprint of persistent extra-tropical drought in the instrumental era. Int. J. Climatol. 2008; 28, 1761–1774.
[14]. Jones PD, Hulme M. Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Journal of Climatology. 1996;16, 361–377, (R).
 [15]. Lloyd-Hughes B, Saunders MA. A drought climatology for Europe. Int. J. Climatol. 2002; 22, 1571–1592.
[16]. Li JG, Ruan HX, Li JR, Huang SF. Application of TRMM precipitation data in meteorological
drought monitoring. Journal of China Hydrology. 2010; 30: PP 43–46.
[17]. McKee TB, Doesken NJ, Kleist J. The relationship of drought frequency and duration to time scales, In: Proceedings of the 8th conference on applied climatology. 17–22 January, Anaheim, CA, Am Meteor Soc, Boston, MA, 1993;179–184.
[18]. McKee TB, Doesken NJ, Kleist JY. Drought monitoring with multiple time scales. Ninth Conference on Applied Climatology. American Meteorological Society: Dallas. TX. 1995; PP 233–236.
[19]. Mishra AK, Singh VP. A review of drought concepts. Journal of Hydrology. 2010; 391(1), 202-216.
[20]. Morid S, Smakhtin V, Moghaddasi M. Comparison of seven meteorological indices for drought monitoring in Iran. Int. J. Climatol. 2006; 26, 971–985.
[22]. Rhee J. Monitoring Agricultural Drought for Arid and Humid Regions Using Multi-sensor Remote Sensing Data. Remote Sensing of Environment. 2010; 114, 2875–2887.
[23]. Roswintiarti O, Oarwati S, Anggraini N. Potential drought monitoring over agriculture area in Java Island. Indonesia, Indonesian National Institute of Aeronautics and Space (LAPAN), Progress Report of SAFE Prototype Year. 2010; Pp.121-135.
[24]. Shakya N, Yamaguchi Y. Vegetation, water and thermal stress index for study of drought in Nepal and central Northeastern India. Int. J. Remote. Sens. 2010; 31, 903–912.
[26]. Szinell CS, Bussay A, Szentimrey T. Drought tendencies in Hungary. Int. J. Climatol. 1998; 18, 1479–1491.
[27]. Taghavi F, Mohammadi H. Study the Return Period of Extreme Climate Events for Reduction of Environmental Impacts. Journal of Environmental Studies. 2007; 33(43). 11–20. [Persion]
[28]. Thenkabail PS, Enclona EA, Ashton MS, Legg C, Jean De Dieu M. The use of remote sensing data for drought assessment and monitoring in southwest Asia. International Water Management Institute. PO Box 2075. Colombo. Sri Lanka. 2004.
[29]. Wilhite DA. Drought as a natural hazard, In: Wilhite, D. A (Editor), Drought: A Global Assessment, Routledge, London. 2000.
[30]. Wu H, Hayes MJ, Weiss A, Hu Q. An evaluation of the standardized precipitation index, the China-z index and the statistical z-score. Int. J. Climatol, 2001; 21, 745–758.
[31]. Zang WB, Ruan BQ, Li JG, Huang SF. Analysis of extraordinary meteorological drought in
Southwest China by using TRMM precipitation data. Journal of China Institute of Water Resources and Hydropower Research. 2011; 8: PP 97–106.
 [32]. Zeng H, Lijuan L, Li J. The evaluation of TRMM multisatellite precipitation pnalysis (TMPA) in drought monitoring in the Lancang River Basin. Journal of Geographical Sciences, 2012; 22(2): 273-282.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
دوره 3، شماره 1
فروردین 1395
صفحه 31-43
  • تاریخ دریافت: 20 دی 1394
  • تاریخ بازنگری: 15 مرداد 1395
  • تاریخ پذیرش: 27 فروردین 1395
  • تاریخ اولین انتشار: 27 فروردین 1395