پیش ‏بینی حساسیت به فرسایش آبکندی منطقۀ سیمره براساس مدل عامل قطعیت و تعیین اهمیت عوامل مؤثر بر آن

نوع مقاله : پژوهشی

نویسندگان

1 استادیار گروه مرتع و آبخیزداری، دانشکدۀ کشاورزی، دانشگاه لرستان، خرم‏آباد

2 دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشگاه لرستان، خرم ‏آباد

3 دانشجوی کارشناسی‏ ارشد مهندسی آبخیزداری، دانشگاه لرستان، خرم ‏آباد

چکیده

فرسایش آبکندی با توجه به تخریب شدید اراضی در مناطق خشک و نیمه‏خشک، یک مشکل بزرگ در مدیریت منابع طبیعی و حفاظت خاک محسوب می‏شود. بنابراین، تعیین مناطق مستعد فرسایش آبکندی و شناسایی عوامل مؤثر بر آن می‏تواند به مدیران و تصمیم‏گیران کمک کند تا خطر وقوع این فرسایش را کاهش دهند. هدف تحقیق حاضر پیش‏بینی وقوع فرسایش‏های آبکندی منطقۀ سیمرۀ استان لرستان براساس مدل عامل قطعیت و تعیین اهمیت هریک از عوامل محیطی مؤثر بر آن است. در ابتدا نقشۀ رستری متغیرهای مؤثر بر فرسایش آبکندی (ارتفاع، درجۀ شیب، جهت شیب، فاصله از رودخانه، شاخص رطوبت توپوگرافی، شاخص توان جریان، کاربری اراضی، خاک‏شناسی و سنگ‏شناسی) در قالب پایگاه داده و سامانۀ اطلاعات جغرافیایی ساخته شد. براساس مطالعات میدانی، 100 موقعیت فرسایش آبکندی ثبت و به‌صورت تصادفی دو گروه آموزش مدل (70 درصد آبکند‏ها) و اعتبارسنجی مدل (30 درصد آبکند‏ها) تقسیم شد. پس از محاسبۀ شاخص‏های CF و Z مدل عامل قطعیت و واسنجی مدل، نقشۀ پیش‏بینی مناطق مستعد فرسایش آبکندی با استفاده از نرم‌افزارهای ArcGIS10.2 تهیه شد. نقشۀ نهایی براساس روش منحنی مشخصۀ عامل گیرنده (ROC) و داده‌های آبکندی گروه اعتبارسنجی، ارزیابی و اعتبارسنجی شد. نتایج اعتبارسنجی نقشۀ پیش‏بینی مناطق مستعد فرسایش آبکندی نشان داد که دقت مدل عامل قطعیت6/85 درصد است. بنابراین، کارایی مدل عامل قطعیت برای پیش‏بینی مناطق مستعد وقوع فرسایش آبکندی تأیید شد. علاوه بر آن، نتایج آنالیز حساسیت مدل نشان داد که متغیرهای خاک‏شناسی، سنگ‏شناسی و شیب زمین بیشترین تأثیر را بر دقت پیش‏بینی وقوع فرسایش آبکندی دارند.
 
 
 
 
 
 

کلیدواژه‌ها

موضوعات


 
[1] Prosser IP. Thresholds of channel initiation in historical and Holocene times, southeastern Australia. Advances in hillslope processes. 1996;2:687-708.
[2] Poesen J, Nachtergaele J, Verstraeten G, Valentin C. Gully erosion and environmental change: importance and research needs. Catena. 2003;50(2):91-133.
[3] Sadeghi SHR, Noormohamadi F, Sofi M, Yasrebi B. Estimation of sediment volume of gully erosion using important components of rainfall. Journal of Agriculture and Natural Resources Sciences. 2008; 1:172-180. [Persian]
[4] Ireneusz, M. Dating of small gully formation and establishing erosion rates in old gullies under forest by means of anatomical changes in exposed tree roots (Southern Poland), Geomorphology. 2008;93:421 – 436.
[5] Olfati S, Moradi K. Assessment of gully erosion of Direh watershed using climate indices. Sepehr Journal. 2014; 89:43-45. [Persian]
[6] Biati K. Gully erosion characteristics and conditioning factors of gullying process (Case study: Ahar-Meshkinshahr region). Geography and Development Iranian J. 2006; 7:115-136. [Persian]
[7] Chung CF, Fabbri AG. Three Bayesian prediction models for landslide hazard. InProceedings of international association for mathematical geology 1998 annual meeting (IAMG’98), Ischia, Italy 1998 Oct 3 (pp. 204-211).
[8] Renschler CS, Harbor J. Soil erosion assessment tools from point to regional scales—the role of geomorphologists in land management research and implementation. Geomorphology. 2002;47(2):189-209.
[9] Jafari Gorzin B, Kavian A. Assessment of gully erosion occurrence using remote sensing and geographical information system in Sorkhabad watershed, Mazandaran. Iranian Journal of Watershed Management and Sciences. 2009; 7:55-58. [Persian]
[10] Maghsodi M, Shadfar S, Abasi M. Gully erosion susceptibility in Zavarian Watershed, Qom Province. Journal of quantitative geomorphological researches. 2011; 2:35-52. [Persian]
[11] Betts HD, Derose RC. Digital Elevation as Tool for Monitoring and Measuring Gully Erosion, Jag, 1999; 2:91-101.
[12] Shadfar S. Application of fuzzy logic for gully erosion assessment using geographic information system (GIS) (Case study: Tarood Watershed). Sepehr Journal. 2014; 92:35-42. [Persian]
[13] Entezari M, Maleki A, Moradi K, Olfati S. Gully erosion zonation using analytical hierarchy process (AHP) in Direh watershed. J Spatial Planning. 2013;17:65-86. [Persian]
[14] Dube F, Nhapi I, Murwira A, Gumindoga W, Goldin J, Mashauri DA. Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District–Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C. 2014 Dec 31;67:145-52.
[15] Yamani M, Zamanzadeh SM, Ahmadi M. Analysis of gully erosion formation and development (Case study: Kahor Watershed, Fars Province). Geographical researches of desert regions. 2013; 1:53-84. [Persian]
[16] Farajzadeh M, Afzali A, Khalili Y, Gholichi E. Evaluation of gully erosion susceptibility using multivariate logistic regression (Case study: Kiasar, SE Mazandaran). Journal of Environmental Erosion Research. 2012; 6:42-57. [Persian]
[17] Zakerinejad R, Märker M. Prediction of Gully erosion susceptibilities using detailed terrain analysis and maximum entropy modeling: a case study in the Mazayejan Plain, Southwest Iran. Geogr Fis Din Quat. 2014;37(1):67-76.
[18] Rahmati O, Haghizadeh A, Pourghasemi HR, Noormohamadi F. Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. Natural Hazards. 2016;82(2):1231-1258.
[19] Moore ID, Grayson RB, Ladson AR. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological processes. 1991;5(1):3-30.
 [20] Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR. Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arabian Journal of Geosciences. 2013;6(7):2351-2365.
[21] Yesilnacar EK. The application of computational intelligence to landslide susceptibility mapping in Turkey. University of Melbourne, Department, 200; 2005.
[22] Feiznia S, Heshmati M, Ahmadi H, Ghodosi J. Assessment of gully erosion in Aghajari Formation in Ghasr-shirin region. Journal of Research and Reconstruction in Natural Resources. 2007; 40:32-74. [Persian]
[23] Nohegar A, Heidarpour M. Phisico-chemisrty and morphological characteristics of affected areas by gully erosion. Journal of Environmental Erosion Research. 2011; 1:29-44. [Persian]
[24] Valentin C, Poesen J, Li Y. Gully erosion: impacts, factors and control. Catena. 2005;63(2):132-53.
[25] Ghodosi J, Davari M. Assessment of climatic and morphological characteristics of gully erosion (Case study: Qom Province). 3th conference of soil erosion and sediment (Center of Soil Conservation and Watershed Management, Tehran). 2005; 342-348. [Persian]
[26] Sadeghi SHR, Safaian N, Ghanbari S. Evaluation of the role of land use in soil erosion rate and its types (Case study: Ksilian Watershed). Journal of Agriculture Engineering Researches. 2006; 26:85-98. [Persian]
[27] Soleimanpour SM, Sofi M, Ahmadi H. Assessment of role of different land use types in gully erosion in Fars Province. Iranian Journal of Watershed Management and Sciences. 2008; 3:66-68. [Persian]
[28] Malik I. Dating of small gully formation and establishing erosion rates in old gullies under forest by means of anatomical changes in exposed tree roots (Southern Poland). Geomorphology. 2008;93(3):421-36.
دوره 3، شماره 1
فروردین 1395
صفحه 83-93
  • تاریخ دریافت: 02 بهمن 1394
  • تاریخ بازنگری: 29 فروردین 1395
  • تاریخ پذیرش: 27 اسفند 1394
  • تاریخ اولین انتشار: 01 فروردین 1395
  • تاریخ انتشار: 01 فروردین 1395