[4]. Mahdavi M. Practical Hydrology. 11. Tehran: University of Tehran; 1998. (In Persian).
[5]. Asghari Moghaddam A, Nourani V, Nadiri A. Modeling of Tabriz Plain Rainfall Using Artificial Neural Networks. Journal of Agricultural Science (University of Tabriz). 2008; 18(1): 1-15. (In Persian).
[6]. Anderson D, McNeill G. Artificial Neural Networks Technology. Utica, New York: Kaman Sciences Corporation; 1992.
[9]. Fatehi Marj A, Mahdian M.H. Autumn rainfall forecasting using ENSO indices by Neural Network method. Watershed Management Researches (Pajouhesh & Sazandegi). 2009; 22(3): 42-52. (In Persian).
[12]. Belayneh A, Adamowski J, Khalil B, Ozga-Zielinski B. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. Journal of Hydrology. 2014; 508: 418-429.
[13]. Kişi Ö, Sanikhani H. Prediction of long‐term monthly precipitation using several soft computing methods without climatic data. International Journal of Climatology. 2015; 35(14): 4139-4150.
[15]. Choubin B, Khalighi-Sigaroodi S, Malekian A, Kişi Ö. Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference system for forecasting precipitation based on large-scale climate signals. Hydrological Sciences Journal. 2016; 61(6): 1001-1009.
[16]. Altunkaynak A, Ozger M. Comparison of Discrete and Continuous Wavelet–Multilayer Perceptron Methods for Daily Precipitation Prediction. Journal of Hydrologic Engineering. 2016; 04016014: 1-11.
[17]. Rahimi D, Abdollahi Kh, Hasheminasab S. Identify Tele-connection Patterns affecting on Rainfall in Karoon Basin. Iranian journal of Ecohydrology. 2016; 3(1): 95-105. (In Persian).
[18]. Ruigar, H, Golian S. Prediction of precipitation in Golestan dam watershed using climate signals. Theoretical and Applied Climatology. (2016); 123(3-4): 671-682.
[21]. Haghizadeh A, Mohammadlou M, Noori F. Simulation of Rainfall-Runoff Process using multilayer perceptron and Adaptive Neuro-Fuzzy Interface System and multiple regression (Case Study: Khorramabd Watershed). Iranian journal of Ecohydrology. 2015; 2(2): 233-243. (In Persian).
[23]. Haykin S. Neural Networks: a Comprehensive Foundation. Prentice Hall PTR, Upper Saddle River. 1998.
[24]. Shanker M, Hu M Y, Hung M S. Effect of data standardization on neural network training. Omega. 199; 24(4): 385-397.
[25]. Asadzadeh F, Byzedi M, Kaki M. Monitoring and Prediction of Drought in Western Urmia Lake Basin Rain Gage Stations by ANFIS Model. Iranian journal of Ecohydrology. 2016; 3(2): 205-2018. (In Persian).
[27]. Jang J S. ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems man and cybernetics. 1993; 23(3): 665-685.
[28]. Jang, J S, Sun C T. Neuro-fuzzy modeling and control. Proceedings of the IEEE. 1995; 83(3): 378-406.
[29]. Tiryaki S, Özşahin Ş, Yıldırım İ. Comparison of artificial neural network and multiple linear regression models to predict optimum bonding strength of heat treated woods. International Journal of Adhesion and Adhesives. 2014; 55: 29–36.
[30]. Sousa S I V, Martins F G, Alvim-Ferraz M C M, Pereira M C. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling & Software. 2007; 22(1): 97–103.