انتخاب مناسب‌ترین ورودی‌ها برای مدل‌ شبکۀ عصبی مصنوعی با استفاده از الگوریتم جامعۀ مورچگان

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری منابع آب، گروه علوم و مهندسی آب، دانشگاه بیرجند

2 دانشیار گروه علوم و مهندسی آب، دانشگاه بیرجند

چکیده

یافتن مناسب‏ترین ورودی‏ها برای شبکۀ عصبی و همچنین تعداد مناسب ورودی برای آن یکی از چالش‏هایی است که همواره محققان با آن روبه‏رو هستند. اغلب، بهترین ساختار برای شبکۀ عصبی نیز به‏صورت آزمون و خطا مشخص می‏‏شود و درنهایت با تعریف چند ورودی خاص مدل‏های مختلفی تولید و بررسی می‏شوند. در این تحقیق به مدل‏سازی کیفی جریان رودخانۀ گادارچای با استفاده از شبکۀ عصبی مصنوعی پرداخته شده و دو مدل و برای هر مدل چهار سناریو تعریف شد. در هر دو مدل پارامتر هدف مقدار هدایت الکتریکی بوده است. ورودی‏های مدل اول (ANNa) را پارامترهایی تشکیل می‏دهند که بیشترین همبستگی را با پارامتر هدف (EC) داشته‏اند. در مدل دوم (ANNb) مناسب‏ترین پارامترهای ورودی با استفاده از الگوریتم‏ جامعۀ مورچگان (ACO) مشخص شد. معیارهای به‏کار‏رفته در این تحقیق شامل معیارهای میانگین مربعات خطا (MSE)، مجموع مربعات خطا (SSE)، نش‏ـ ساتکلیف و ضریب همبستگی بوده است. نتایج نشان داد بهترین مدل ANNa، مدل ANNa2 با مقدار MSE برابر 0017/0 است. ورودی‏های این مدل مجموع کاتیون‏ها، سختی کل و کلسیم است. بهترین مدل ANNb، مدل ANNb3 با مقدار MSE برابر 0012/0 است. ورودی‏های این مدل درصد سدیم، pH و سختی کل است. همچنین، نتایج نشان داد استفاده از الگوریتم جامعۀ مورچگان برای یافتن بهترین پارامترهای ورودی سبب افزایش کارایی شبکۀ عصبی در قسمت صحت‏سنجی و تست در مدل ANNb نسبت به مدل ANNa می‏‏شود. طبق نتایج به‏دست‏آمده به‏جای آزمون و خطا در یافتن بهترین ورودی‏ها برای شبکۀ عصبی می‏توان به‏عنوان گام نخست از پارامترهایی استفاده کرد که بیشترین همبستگی را با پارامتر هدف دارند؛ اما پارامترهایی که با پارامتر هدف همبستگی زیادی دارند، لزوماً بهترین ورودی‏ها برای شبکه نیستند. همچنین، نتایج نشان داد از الگوریتم ACO می‏توان به‏عنوان روشی برای انتخاب متغیرهای ورودی استفاده کرد و عملکرد شبکۀ عصبی را بهبود بخشید.

کلیدواژه‌ها

موضوعات


Khoshnazar A, Nasrabadi T and Abbasimaedeh P. Evaluating the efficiency of artificial neural network in prediction of electrical conductivity of Zarrinehroud river. Journal of Human and Environment. 2013; 10(22):1-16. [Persian]
[2]. Banejad H, Kamali M, Amirmoradi K and Olyaie E. Forecasting some of the qualitative parameters of rivers using wavelet artificial neural network hybrid (w-ann) model (case study: Jajroud river of Tehran and Gharaso river of Kermanshah). Journal of Health and Environment, 2013; 6(3): 277-294. [Persian]
[3]. Barzegar R, Adamowski J and Asghari Moghaddam A. Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-chay river, Iran. Stochastic Environmental Research and Risk Assessment, 2016; 30(7):1797-1819.
[4]. Sattari MT, Rezazadeh Joudi A and Kusiak A. Estimation of water quality parameters with data-driven model. Journal American Water Works Association. 2016; 108:4.
[5]. Kanda EK, Kipkorir EC and Kosgei JR. Dissolved oxygen modelling using artificial neural network: a case of river nzoia, lake victoria basin, kenya. Journal of Water Security, 2016; 2:1-7.
[6]. Seght Foroosh A, Monjezi M and Khademi Hamidi J. Optimization of blasting operation using hybrid Neural Network-Ant Colony (Case Study: Delkan Iron Mine). Journal of Modeling and Engineering. 2017; DOI: 10.22075/JME.2017.2449. [Persian]
[7]. Faghih H. Evaluating artificial neural network and its optimization using genetic algorithm in estimation of monthly precipitation data (case study: Kurdistan region). Journal of Water and Soil Science (Journal of Science and Technology of Agriculture and Natural Resources). 2010. 14(51): 27-44. [Persian]
[8]. Socha K and Blum C. An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Journal of Neural Computing and Applications. 2007; 16: 235-247.
[9]. Emami Skardi MJ, Afshar A, Saadatpour M and Solis SS. Hybrid ACO–ANN-based multi-objective simulation–optimization model for pollutant load control at basin scale. Environmental Modeling and Assessment. 2015; 20(1): 29-39.
[10]. Valdez F, Castillo O and Melin P. Ant colony optimization for the design of modular neural networks in pattern recognition. In Neural Networks (IJCNN), International Joint Conference. 2016; 163-168.
[11]. Zho G. Ant colony optimization training feed-forward neural network based on elitist selection strategy. Boletín técnico. 2017; 55(1): 200-206.
[12]. Zeynali MJ, Nikbakht S, Mohammadezapour O. Prediction input flows to Mollasadra reservoir by using artificial neural network. 5th Iranian Water Resources Management Conference. Shahid Beheshti University. 29 Jul 2013. [Persian]
 [13]. Zeynali MJ, Mohammadrezapour O and Forughi F. Comparison of imperialist competitive algorithm (ICA) and ant colony algorithm (ACO) for optimizing exploitation of Doroudzan reservoir with application of chain constraints approach. Journal of Water and Soil Conservation. 2016; 22(6): 231-243. [Persian]
دوره 5، شماره 1
فروردین 1397
صفحه 59-68
  • تاریخ دریافت: 19 فروردین 1396
  • تاریخ بازنگری: 19 تیر 1396
  • تاریخ پذیرش: 17 تیر 1396
  • تاریخ اولین انتشار: 01 فروردین 1397
  • تاریخ انتشار: 01 فروردین 1397