[1]. Mirzaei M, Huang Y.F, and El-Shafie A. Applicati on of the generalized likelihood uncertainty estimation (GLUE) approach for assessing uncertainty in hydrological models. A review, Stochastic Environmental Research and Risk Assessment. 2015; 29(5): 1265-1273.
[2]. Rojas R, Kahunde S. Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modeling. Journal of Hydrology.2010; 394(3)416-435.
[3]. Montanari A, Grossi G. Estimating the uncertainty of hydrological forecasts. A statistical approach, Water Resources Research. 2008; 44: W00B08.
[4]. Blazkova S, Beven K. A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: Skalka catchment, Czech Republic, Water Resources Research. 2009; 45: W00B16.
[5]. Blasone R.S, Parameter estimation and uncertainty assessment in hydrological modelling. 2007; Technical university of Denmark.
[6]. Johnson J. Framework to effectively quantify and communicate groundwater model uncertainty to management and client, U.S. department of the Interior Urea of Reclamation. Pacific Northwest Regional Office Boise. 2010; Idaho, U.S.A.
[7]. Vrugt JA, Gupta HV, Bouten W, Sorooshian S. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic parameter estimation. Water Resources Research. 2003; 39(8):1201.
[8]. Kanso A, Chebbo G, Tassin B. Application of MCMC–GSA model calibration method to urban runoff quality modeling, Reliability Engineering & System Safety. 2004; 91(10-11):1398–1405.
[9]. Dotto C.B.S, Mannina G, Kleidorfen M, Vezzaro L, Henrichs M, cCarthy, et al. Comparison of different uncertainty techniques in urban stormwater quantity and quality modeling, Water Research. 2012; 46(8):2545-2558.
[10]. Talebizadeh M, Morid S, Ayyoubzadeh SA, Ghasemzadeh M. ncertainty Analysis in Sediment Load Modeling Using ANN and SWAT Model. Water Resources Management. 2009; 24(9):1747-1761.
[11]. Pohll G. Pohlmann K, Hassan A, Chapman J, Mihvec T. Assessing groundwater model uncertainty for the central Nevada test area. Spectrum 2002.
[12]. Hassan AE, Bekhit HB, Chapmann JB. Uncertainty assessment of a stochastic groundwater flow model using GLUE analysis. Journal of Hydrology. 2008; 362:89-109.
[13]. Blasone R.S, Vrugt J.A, Madsen H, Rosberg D, Robinson B.A, Zyvoloski, G.A. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling, Advances in Water Resources. 2008; 31:630–648.
[14]. Fu J, Gomez-Hernandez JJ. Uncertainty Assessment and data worth in groundwater flow and mass transport modeling using a blocking markov chain montecarlo method. Journal of Hydrology. 2009; 364:328-341.
[15]. Sepúlveda N. Doherty J. Uncertainty Analysis of a Groundwater Flow Model in East-Central Florida. Groundwater. 2015; 53(3):464–474.
[16]. Keating EH, Doherty J, Vrugt JA, Kang Q. Optimization and uncertainty assessment of strongly non-linear groundwater models with high parameter dimensionality. Water Resources Research. 2010; W10517(46).
[17]. Rojas R, Feyen L, Dassargues A. Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resources Research. 2008; W12418 44(12):619-624.
[18]. McKinney DC, Lin MD. Genetic algorithm solution of groundwater management models. Water Resources Research. 1994; 30(6):1897.
[19]. Huang C, Mayer AS. Pump-and-treat optimization using well locations and pumping rates as decision variables. Water Resources Research. 1997; 33(5):1001–1012.
[20]. Storck P, Eheart JW, Valocchi AJ. A method for the optimal location of monitoring ells for detection of groundwater contamination in threedimensional heterogeneous aquifers. Water Resources Research. 1997; 33(9):2081.
[21]. Das, Datta. Application of optimisation techniques in groundwater quantity and quality management. Sadhana: Academy Pro- ceedingsin Enging. 2001; 26 (4).293-316.
[22]. Hsiao CT, Chang LC. Dynamic optimal groundwater management with inclusion of fixed costs. Journal of Water Resources Planning and Management. 2002; 128(1):57–65.
[23]. Loaiciga HA. Analytical game theoretic approach to groundwater extraction. Journal of Hydrology. 2004; 297:22–33.
[24]. Reed PM, Minsker BS. Striking the balance: Long-term groundwater monitoring design for conflict objectives. Journal of Water Resources Planning and Management. 2004; 130(2):140-149.
[25]. Tran TM. Multi-Objective Management of Saltwater in Groundwater. Optimization under Uncertainty. 2004; TU Delft University of Technology.
[26]. Wu J, Zheng C, Chein C.C, Zheng L. A comprative study of Monte Carlo simple genetic algorithm and noisy genetic algorithm for cost-effective sampling network design under uncertainty. Advance in Water Resources. 2005;29(1) 899-911.
[27]. Karamouz M, Tabari M. M, Kerachian R. Application of artificial neural networks and generic algorithms in conjunctive use of surface and groundwater resources. Water International. 2007; 32(1): 163-176.
[28]. Salazar R, Szidarouszky F, Coppola EJr, Rojana A. Application of game theory for groundwater conflict in Mexico. Journal of Environmental Management. 2007; 84: 560-571.
[29]. Bazargan-Lari MR, Kerachian R, Mansoori A. A conflictresolution model for the onjunctive use of surface and groundwater resources that considers water-quality issues: A case study. Environmental Management. 2009; 43:470–482.
[30]. Mahjoub MA, Ammar S, Edziri H, Bouraoui A, Zine Mighri, Z. Antiin- flamatory and antioxidant activities of some extracts and pure natural products isolated from Rhus tripartitum (Ucria) leaves, stems and fruits. Med. Chem. Res. 2010; 19: 271–282.
[31]. Ketabchi H, Ataie-Ashtiani B. Development of Combined Ant Colony Optimization Algorithm and Numerical Simulation for Optimal Management of Coastal Aquifers. Iran-Water Resources Research. 2011; 7(1):1-12 (In Persian).
[32]. Fallah mahdipour A, Bozorg Hadad A, Alimohammadi S. Optimal Operation of the Conjunctive Aquifers - Dam system: The Genetic Programming Approach. Water resource engineering. 2014; 7(21):51-66 (In Persian).
[33]. Ayvaz MT, Elçi A. A groundwater management tool for solving the pumping cost minimization problem for the Tahtali watershed (Izmir-Turkey) using hybrid hs-solver optimization algorithm. Journal of Hydrology. 2013; 478:63–76.
[34]. Narula K, Gosain, A. K. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin. Science of The Total Environment. 2013; 468, S102-S116.
[35]. Elçi A, Ayvaz MT. Differential-evolution algorithm based optimization for the site selection of groundwater production wells with the consideration of the vulnerability concept. Journal of Hydrology. 2014; 511:736–749.
[36]. Nakhaei M, Mohammadi M, Rezaie M. Optimizing of aquifer withdrawal numerical model using genetic algorithm (case study: Uromiyeh coastal aquifer). Iran-Water Resources Research. 2014; 10(2):94-97 (In Persian).
[37]. El Alfy M. Numerical groundwater modelling as an effective tool for management of water resources in arid areas. Hydrological Sciences Journal. 2014; 59(6), 1259-1274.
[38]. Izady A, Davary K, Alizadeh A, Ziaei AN, Akhavan S, Alipoor, et al. Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor plain, Iran. Hydrogeology Journal. 2015; 23(1): 47-68.
[39].
Raei E, Nikoo MR,
Pourshahabi S. A multi-objective simulation-optimization model for in situ bioremediation of groundwater contamination: Application of bargaining theory
Journal of Hydrology.2017;
551: 407-422.
[40]. Thomas A. Simulation optimization model for aquifer parameter estimation using coupled meshfree point collocation method and cat swarm optimization. Engineering Analysis with Boundary Elements. 2018; 91: 60-72.
[41]. Bates BC, Campbell EP. A Markov Chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall - runoff modeling. Water Resources Research. 2001; 37: 937-947.
[42]. Neal R. Probabilistic inference using Markov Chain Monte Carlo methods, Technical Report CRG-TR-93-1, Department of Computer Science. University of Toronto. Toronto. Canada. 1993; 144.
[43]. Kuczera G, Parent E. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm. Journal of Hydrology. 1998; 211: 69-85.
[44]. Metropolis N, Rosenbluth A.W, Rosenbluth M.N, Teller A.H, Teller E. Equations of state calculations by fast computing machines. Journal of Chemical Physics. 1953; 21: 1087-1091.
[45]. Hastings W.K. Monte Carlo sampling methods using Markov Chains and their applications. Biometrika. 1970; 57: 97-109.
[46]. Laloy E, Vrugt J.A. High-dimensional posterior exploration of hydrologic models using multiple-try DREAM (ZS) and high-performance computing. Water Resources Research. 2012; 48: W01526.
[47]. Vrugt, JA, Ter Braak CJF, Diks CGH, Robinson BA, Hyman JM, Higdon D. Accelerating Markov Chain Monte Carlo simulation using self-adaptative differential evolution with randomized subspace sampling. International Journal of Nonlinear Sciences and Numerical Simulation. 2009; 10: 273-290.
[48]. Kuczera G, Kavetski D, Renard B, Thyer M. A limited-memory acceleration strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models. Water Resources Research. 2010; 46: W07602.
[49]. Ter Braak CJF. A Markov chain Monte Carlo version of the genetic algorithm differential evolution: Easy Bayesian computing for real parameter spaces. Statistics and Computing. 2006; 16: 239-249.
[50]. Vrugt JA, Ter Braak CJF, Clark MP, Hyman JM, Robinson BA. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resources Research. 2008; 44: W00B09.
[51]. Montanari A, Koutsoyiannis D. A blueprint for process-based modeling of uncertain hydrological systems. Water Resources Research. 2012; 48: W09555.
[52]. Schoups G, Vrugt J.A. A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non-Gaussian errors. Water Resources Research. 2010; 46: W10531.
[53]. Koskela JJ, Croke BWF, Koivusalo H, Jakeman AJ, Kokkonen T. Bayesian inference of uncertainties in precipitation-streamflow modeling in a snow affected catchment. Water Resources Research. 2012; 48: W11513.
[54]. Kamali A, Niksokhan MH. Development of a Model for Calculation of Sustainability Index of Groundwater Resources. Ecohydrology. 2017; 4(4): 1071-1087. (In Persian)
[55]. Studies of gavkhuni water balance, groundwater report, zayanderoud consulting company.2015.
[56]. McDonald M, Harbaugh GAW. A modular three-dimensional finite-difference ground-water flow model.1988.
[57]. Storn R, Price K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization.1997; 11: 341-359.
[58]. Price K.V, Storn R.M, Lampinen J.A. Differential evolution, A practical approach to global optimization, Springer. Berlin. 2005; 538 pp.
[59]. Gelman A, Rubin D.B. Inference from iterative simulation using multiple sequences, Statistical Science.1992; 7: 457-472.
[60]. Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proc. of the Sixth International Symposium on Micro Machine and Human Science; 1995; 4-6 October, Nagoya, Japan, 39-43.
[61]. Alemayehu T, van Griensven A, Woldegiorgis B.T, Bauwens W. An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems. Hydrol. Earth Syst. Sci. 2017; 21, 4449–4467.
[62]. Nourali M, Ghahraman B, Pourreza-Bilondi M, Davary K. Effect of formal and informal likelihood functions on uncertainty assessment in a single event rainfall-runoff model. Journal of Hydrology. 2016;540: 549–564.