[1].  Boano F, Harvey JW, Marion A, Packman AI, Revelli R, Ridolfi L, Wörman A. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics. 2014: 52(4), 603-679.
                                                                                                                [2].  Tonina D, Buffington JM. Hyporheic exchange in mountain rivers I: Mechanics and environmental effects. Geography Compass. 2009: 3(3), 1063-1086.
                                                                                                                [3].  Buffington JM, and Tonina D. Hyporheic exchange in mountain rivers II: Effects of Channel Morphology on Mechanics, Scales, and Rates of Exchange. Geography Compass. 2009: 3(3), 1038-1062.
                                                                                                                [4].  Stonedahl SH. Investigation of the Effect Multiple Scales of Topography on Hyporheic Exchange. PhD Dissertation, Northwestern University, 2011.
                                                                                                                [5].  Biddulph M. Hyporheic Zone: In Situ Sampling, Geomorphological Techniques. Chapter 3, Section 11.1, 2015.
                                                                                                                [6].  Thibodeaux LJ, Boyle JD. Bedform-generated convective transport in bottom sediment. Nature. 1987: 325(6102), 341-343.
                                                                                                                [7].  Elliott AH, Brooks NH. Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments. Water Resources Research. 1997: 33(1), 137-151.
                                                                                                                [8].  Packman AI, Salehin M, Zaramella M. Hyporheic exchange with gravel beds: basic hydrodynamic interactions and bedform-induced advective flows. Journal of Hydraulic Engineering. 2004: 130(7), 647-656.
                                                                                                                [9].  Fox A, Boano F, Arnon S. Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune shaped bed forms. Water Resources Research. 2014: 50(3), 1895-1907.
                                                                                                                [10].            Cardenas MB, Wilson JL. The influence of ambient groundwater discharge on hyporheic zones induced by current-bedform interactions. Journal of Hydrology. 2006: 331, 103–109.
                                                                                                                [11].            Cardenas MB, Wilson JL. Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resource Research. 2007: 43(8).
                                                                                                                [12].            Blois G, Best JL, Sambrook Smith GH, Hardy RJ. Effect of bed permeability and hyporheic flow on turbulent flow over bed forms. Geophysical Research Letters. 2014: 41(18), 6435-6442.
                                                                                                                [13].             Lee DH, Kim YJ, Lee S. Numerical modeling of bed form induced hyporheic exchange. Paddy and Water Environment. 2014: 12(1): 89-97.
                                                                                                                [14].            Chen X, Cardenas MB, Chen L. Three‐dimensional versus two‐dimensional bed form‐induced hyporheic exchange. Water Resources Research. 2015: 51(4), 2923-2936.
                                                                                                                [15].            Rodríguez JF, García CM, García MH. Three‐dimensional flow in centered pool‐riffle sequences. Water Resources Research. 2013: 49(1), 202-215.
                                                                                                                 
                                                                                                                [16].            Tonina D, Buffington JM. Hyporheic exchange in gravel bed rivers with pool‐riffle morphology: Laboratory experiments and three‐dimensional modeling. Water Resources Research. 2007: 43(1).
                                                                                                                [17].            Zhou T, Endreny T A. Reshaping of the hyporheic zone beneath river restoration structures: Flume and hydrodynamic experiments. Water Resources Research. 2013: 49(8), 5009-5020
                                                                                                                [18].            Trauth N, Schmidt C, Maier U, Vieweg M, Fleckenstein JH. Coupled 3‐D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool‐riffle system. Water Resources Research. 2013: 49(9), 5834-5850
                                                                                                                 
                                                                                                                [19].            Buffington JM, Montgomery DR. Effects of hydraulic roughness on surface textures of gravel-bed rivers. Water Resources Research. 1999: 35, 3507– 3521.
                                                                                                                [20].            McSherry RJ, Chua KV, Stoesser T. Large eddy simulation of free-surface flows. Journal of Hydrodynamics. 2017, 29(1): 1-12.
                                                                                                                [21].            Rodi W, Constantinescu G, Stoesser T. Large eddy simulation in hydraulics. IAHR Monograph, London, UK: CRC Press, Taylor & Francis Group, 2013.
                                                                                                                [22].            
Huang P, 
May Chui, TFM. Empirical Equations to Predict the Characteristics of Hyporheic Exchange in a Pool Riffle Sequence. Groundwater. 2018: 56(6), 947-958.