[1]. Mitsch WJ, Gosselink JG. Wetlands. 5th ed. 2015.
[2]. FAO E. Food and Agriculture Organization of the United Nations: Rome. 2017.
[3]. Shahdany SM, Firoozfar A, Maestre JM, Mallakpour I, Taghvaeian S, Karimi P. Operational performance improvements in irrigation canals to overcome groundwater overexploitation. Agricultural Water Management. 2018 May 31;204:234-46.
[4]. Fanish SA, Muthukrishnan P, Sekar SP. Effect of drip fertigation in intensive maize (Zea mays) based intercropping system. CROP RESEARCH. 2011;42(1to3):69-76.
[5]. Acharya G, Barbier E. Using Domestic Water Analysis to Value Groundwater Recharge in the Hadejia'Jama'are Floodplain, Northern Nigeria. American Journal of Agricultural Economics. 2002 May;84(2):415-26.
[6]. Candela L, von Igel W, Elorza FJ, Aronica G. Impact assessment of combined climate and management scenarios on groundwater resources and associated wetland (Majorca, Spain). Journal of hydrology. 2009 Oct 15;376(3-4):510-27.
[7]. Banihabib ME, Najafi Marghki S, Shabestari MH. Integrated water resources planning model to study and predict the supply of environmental water from the watersheds of Turkey, Iraq and Iran. Iranian Journal of Water Research. 2019. 32: 115-126 (Persian)
[8]. Vakil HA. Gavkhooni Swamp to Turn into an International Tourism Destination. Skyscrapercity: Tourism Infrastructure. Development and News. 2006.
[9]. Van Overloop PJ. Drainage control in water management of polders in the Netherlands. Irrigation and drainage systems. 2006 Feb 1;20(1):99-109.
[10]. Schuurmans J, Clemmens AJ, Dijkstra S, Hof A, Brouwer R. Modeling of irrigation and drainage canals for controller design. Journal of irrigation and drainage engineering. 1999 Dec;125(6):338-44.
[11]. Van Overloop PJ, Weijs S, Dijkstra S. Multiple model predictive control on a drainage canal system. Control Engineering Practice. 2008 May 1;16(5):531-40.
[12]. Yaltaqian khiabani M, Hashemi SM. Design of automatic control System for equitable distribution of water in dehydrated conditions and inflow fluctuations, case study of Roodasht irrigation network, Soil Conservation Research. 2018. 25(5). (Persian)
[13]. Safavi HR, Golmohammadi MH, Sandoval-Solis S. Scenario analysis for integrated water resources planning and management under uncertainty in the Zayandehrud river basin. Journal of hydrology. 2016 Aug 1;539:625-39.
[14]. Davijani MH, Banihabib ME, Anvar AN, Hashemi SR. Optimization model for the allocation of water resources based on the maximization of employment in the agriculture and industry sectors. Journal of Hydrology. 2016 Feb 1;533:430-8.
[15]. Banihabib ME, Zahraei A, Eslamian S. An integrated optimisation model of reservoir and irrigation system applying uniform deficit irrigation. International Journal of Hydrology Science and Technology. 2015;5(4):372-85.
[16]. Karimi P, Qureshi AS, Bahramloo R, Molden D. Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran. Agricultural water management. 2012 May 15;108:52-60.
[17]. Sandoval-Solis S, McKinney DC, Loucks DP. Sustainability index for water resources planning and management. Journal of Water Resources Planning and Management. 2011 Sep 1;137(5):381-90.
[18]. Hashimoto T, Stedinger JR, Loucks DP. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water resources research. 1982 Feb 1;18(1):14-20.
[19]. Sarhadi A, Soltani S. Determination of water requirements of the Gavkhuni wetland, Iran: A hydrological approach. Journal of arid environments. 2013 Nov 1;98:27-40.