بررسی آثار تغییر اقلیم بر رواناب به کمک مدل درخت تصمیم (مطالعۀ موردی:حوضۀ زرین‌گل)

نوع مقاله : پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی منابع آب،گروه آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشیار، دانشکدۀ مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

10.22059/ije.2022.332407.1566

چکیده

برای بررسی اثر تغییر اقلیم بر رواناب در حوضۀ آبریز زرین‌گل در استان گلستان پس از مدل‏سازی بارش رواناب به کمک مدل درخت تصمیم M5 از نتایج مدل گردش عمومی HADGEM2 تحت دو سناریو RCP 4.5 وRCP 8.5  برای پیش‏بینی رواناب برای دوره‏های اقلیمی آیندۀ نزدیک، میانی و دور استفاده شد. نتایج آزمون من‌ـ کندال برای تشخیص روند در دورۀ 1995ـ 2015 نشان داد فقط بارش در فصل تابستان و دما در فصل بهار و تابستان افزایش معنا‏دار داشتند. با این‏وجود، تأثیر افزایش دما باعث کاهش معنا‏دار دبی در بیشتر فصل‏ها و میانگین سالانۀ دبی شد. همچنین، مدل لارس از کارایی لازم برای تولید داده‏های بارش و دما برخوردار بود. بررسی تغییر اقلیم در حوضۀ آبریز زرین‌گل بیانگر آن بود که تغییرات بارش از الگوی افزایشی و یا کاهشی خاصی پیروی نمی‏کند، اما دمای هوا تحت هر دو سناریوی اقلیمی با افزایش همراه خواهد بود، به طوری که دمای سالانه به‏طور میانگین حدود 5/0 تا 5 درجۀ سانتی‏گراد افزایش خواهد یافت که بیشترین افزایش دما برای سناریوی RCP 8.8 در آیندۀ دور بود. نتایج خروجی دو مدل M5 و MLR نشان داد مدل M5 قادر است ضریب همبستگی را از 7/0  به حدود 87/0  افزایش دهد و مقدار خطای RMSE را از 82/0  به 59/0  کاهش دهد. بر اساس نتایج خروجی مدل M5، رواناب در منطقۀ مطالعاتی نیز طی دوره‏های آتی با کاهش همراه خواهد بود و بیشترین میزان کاهش میانگین دبی ماهانه در آیندۀ دور حدود 41 درصد در ماه مارس برای سناریوی RCP 8.5 برآورد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Climate Change impacts on Runoff by Decision tree model (Case Study: Zaringol basin)

نویسندگان [English]

  • Ysaman Lotfi 1
  • Mehdi Meftah Halaghi 2
  • Khalil Ghorbani 2
1 Graduated Master of Water Resources Engineering, Gorgan University of Agric. Sci. & Natural Res., Gorgan
2 Water Eng. Dep., Gorgan University Of Agriculture Science & Natural Resources
چکیده [English]

In order to investigate the effect of climate change on runoff in Zaringol catchment in Golestan province, the rainfall-runoff relation was modeled using the M5 decision tree model. Moreover, the results of two climate change scenarios -- RCP 4.5 and RCP 8.5 -- under the HADGEM2 general circulation model were used to predict runoff for the near, middle and distant future. Based on Mann-Kendall analysis for 1995-1995, there were noticeable increases only in summer precipitations as well as spring and summer temperatures. However, as temperature increased, a concomitant reduction occurred for most seasonal as well as the average annual discharge values. In addition, Lars provided sufficient accuracy for precipitation and temperature data generation. We found that precipitation changes do not follow a specific increasing or decreasing pattern. In contrast, the air temperature will increase under both climatic scenarios, as in the case of an average of 0.5 to 5 ° C for the annual temperature, which is the largest surge in temperature under the RCP 8.8 scenario in the distant future. The results of M5 and MLR models showed that M5 model can improve the correlation coefficient from 0.7 m^3⁄s to about 0.87 m^3⁄s and the corresponding RMSE value from 0.82 m^3⁄s to 0.59 m^3⁄s According to the M5 model, there will be a runoff reduction in the study area in future periods. The largest decrease will occur in the distant future by approximately 41% in March for the RCP 8.5 scenario.

کلیدواژه‌ها [English]

  • Climate Change Scenarios
  • Temperatures
  • Rainfall-runoff model
  • Zaringol basin
[1]. IPCC. Intergovernmental Panel on Climate Change. Fourth Assessment Report, Climate Change. 2007; 53 pp.
[2]. Khazanedari L, & Zabol Abasi F, & Ghandharii S, & Kouhi M, & Malbousi S. Drought Conditions in the next thirty years in IRAN. Journal of geography and regional development. 2009; (12): 83-98. [Persian]
[3]. IPCC.Climate Change: The Scientific Basic. Contribution of Working Group 1 to The Third Assessment report to the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, N.Y., U.S.A. 2001; 881pp.
[4]. Meshkati A, Kordjazi M. & Babaeian I. Investigation and Assessment of Lars-WG Model in Simulation of Meterorological Data of Golestan in 1993-2007. Journal of Applied Geographic Science. 2010; (16): 81-96 [Persian]
[5]- Babaiyan I. Zabol Abbasi F., Najafynik Z., Adab H., Malbousi S. climate change assessment over Iran during 2010-2039 by using statistical downscaling of echo- G model. Geography and development. 2010; 7(16):135-152.
[6]. Ashraf B, Mousavi Beigi M, Kamali G. A and Davari K. Investigation of Variation Trend of Climatological Parameters in Mashhad over 2011-2030 Period Using Simulated Data by LARS-WG5 Model. First National Conference on Meteorology and Agricultural Water Management. 2011.[Persian]
[7]. Sadeqi A. Abdollahi A and Azad Jelodarlu K. The Perusal of Climate in Zanjan City under Climate Change Conditions. 4 th International Congress of Developing Agriculture, Natural Resources, Environment and Tourism of Iran. 13-15 Feb. 2019. [Persian]
[8]. Ghorbani kh. Sohrabian E. Salari Jazi M and Abdolhiseini M. Prediction of climate change impact on monthly river discharge trend using IHACRES hydrological model (case study: Galikesh watershed). J. of Water and Soil Conservation.2016. [Persian]
 
 [9] Tavakoli M, & Karimi H, & Norollahi H. Investigation the effects of climate change on water resources of Ilam dam watershed. watershed engineering and management.2018;10(2):157-170. https://www.sid.ir/en/journal/ViewPaper.aspx?id=612212. [Persian]
[10]. Chen J, Brissette F.P and Leconte R. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol. 2011; 401(3-4): 190-202.
[11]. Semenov M.A, Donatelli M, Stratonovitch P, Chatzidaki E and Baruth B. ELPIS: A Dataset of Local-scale Saily Climate Scenarios for Europe, Clim Res. 2010; 44: 3-15.
[12]. Habets F, Boé J, Déqué M, Ducharne A, Gascoin S, Hachour A, et al. Impact of climate change on the hydrogeology of two basins in northern France. Climatic Change. 2013; 121(4): 771-785.
[13]. Pascual Sánchez D and Retana Alumbreros, J. Impacts of climate change on water resources in the Mediterranean basin: a case study in Catalonia, Spain.CREAF, Centre de Recerca Ecològica i Aplicacions Forestals. 2014.
[14]. Chang J Y, Wang E, Istanbulluoglu T, Bai Q, Huang D Yang and S. Huang. Impact of Climate Change and Human Activities on Runoff in the Weihe River Basin, China. Quaternary International. 2014; pp: 169-179.
[15]. Sadat Mousavi R, Marofi S. Investigation of the hydrologic response of river flow to climate change (Case study: Dez Dam Basin). J. of Water and Soil Conservation. 2017; 23(6). [Persian]
[16]. Bhattacharya B. and Solomatine D.P. Neural networks and M5 model trees in water level discharge relationship. J. Neurocomputing. 2005; 63: 381-396.
[17]. Ghorbani Kh, Naeimi Kalourazi1 Z, Salari Jazi M and Dehghani A.H. Estimation of monthly discharge using climatological and physiographic parametesr of ungauged basin. J. of Water and Soil Conservation. 2016; 23(3). [Persian]
[18]. Ghorbani KH, Sohrabian E and Salari Jazi M. Evaluation of Hydrological and Data Mining Models in Monthly River Discharge Simulation and Prediction (Case Study: Araz-Kouseh Watershed). J. of Water and Soil Conservation. 2016; 23(1). [Persian]
[19]. Sattari M T, Apaydin H, Ozturk, F. Flow estimations for the Sohu Stream using artificial neural networks. Environmental earth science. 2012; 66: 2031-2045. [Persian]
[20]. Zahiri A.R and Ghorbani Kh. Flow discharge prediction in compound channels by using decision model tree M5. J. of Water and Soil Conservation. 2013; 20(3). [Persian]
[21]. Mann, H. B. Nonparametric tests against trend. Journal of Econometrica. 1945; 13(3):245-259
[22]. Kendall, M. G. Rank Correlation Methods. Griffin, London. 1955; 196p.
[23]. Haltiner G, & Williams R. Numerical prediction and dynamic meteorology New York: John Wiley & Sons. 1980.
[24]. Fallah GHalhari GH. Statistical Downscaling of climatic data. First ed. Sokhan-Gostar. 2014. [Persian]
[25]. Farmer W. H, and Vogel R. M. On the deterministic and stochastic use of hydrologic models. Water Resources Research. 2016; 52(7): 5619- 5633.
[26]. Quinlan J. R. Learning with continuous classes. In 5th Australian joint conference on artificial intelligence. 1992; 92: 343-348.
[27]. Ervine D.A., and Ellis J. Experimental and Computational Aspects of Overbank Flood-Plain Flow. Trans. Royl. Society Edinburgh, Series A. 1987; 78: 315-325.
[28]. Kheradmand m. determining the stage-discharge relation of meanders composite rivers using modern data mining methods. Master Thesis University of Sistan and Baluchestan.2013. [Persian]
[29]. Emadi A.Kia I and Moha,adi GH. Rainfall-Runoff Modeling by Adaptive Neuro-Fuzzy Inference System(ANFIS) and Multi-Variable Linear Regression (MLR). Waterjournal.2019. [Persian]
[30]. Ghasemi M, Naseri A, Soltani mohamadi A and Moazed h. Investigating the trend of future climate change under radiation induction scenarios using mann kendall non parametric test (case Study: South Ahvaz). nivar.2019;107(43). [Persian]