ارزیابی مدل VIC در شبیه‌سازی رواناب‌های سطحی و روندیابی جریان (مطالعۀ موردی‌: حوضه‌های آبریز غرب دریاچۀ ارومیه)

نوع مقاله : پژوهشی

نویسندگان

1 دکتری آب و هواشناسی شهری، دانشکدۀ علوم زمین، دانشگاه شهید بهشتی تهران

2 استاد تمام گروه جغرافیای طبیعی، دانشکدۀ علوم زمین، دانشگاه شهید بهشتی تهران

3 استادیار گروه مهندسی آب، دانشکدۀ کشاورزی، دانشگاه ارومیه‌

چکیده

پیش‏بینی و برآورد مقدار رواناب به‌خصوص رواناب بیشینۀ حاصل از بارش نزولات، نیازمند استفاده از مدل‏های هیدرولوژیک مناسب و دقیق است. یکی از مدل‏های نیمه‌توزیعی که در دهۀ اخیر مورد توجه محققان قرار گرفته، مدل هیدرولوژیکی ظرفیت نفوذ متغیر (VIC) است. پژوهش حاضر با هدف ارزیابی کارایی مدل VIC در شبیه‏سازی‏شدۀ رواناب‏ و روندیابی جریان رودخانه‏های شهرستان ارومیه مشرف به دریاچۀ ارومیه شامل نارلوچای، روضه‌چای، شهرچای و باراندوزچای انجام ‏شده است. برای نیل به هدف یادشده از داده‏های هواشناسی ERA5 استفاده ‏شده است. ضرایب آماری مورد استفاده در پژوهش حاضر برای صحت‌سنجی داده‏های ورودی بارش شامل (ضریب تبیین R2، ریشۀ میانگین مربعات خطای کاکس – باکس TRMSE، نش – ساتکلیف NSE) هستند. بررسی‏های داده‏های هواشناسی ماهواره‏ای با داده‏های مشاهداتی نتایج قابل قبولی دارند، به ‏طوری ‏که شاخص احتمال آشکارسازی POD در تمامی ایستگاه‏های منطقه بیش از 80/0 درصد بوده و حتی در ایستگاه سینوپتیک خوی در شمال منطقۀ مطالعاتی بیشتر از 95/0 درصد است. همچنین، میزان همبستگی بین داده‏های حداکثر و حداقل دما نیز بیش از 93/0 درصد است. پس از ساخت مدل هیدرولوژیک و ریاضی منطقه، واسنجی رواناب مشاهداتی خروجی زیرحوضه‏ها با رواناب شبیه‏سازی‏شده توسط مدل VIC بررسی شد. نتایج نشان داد در تمامی رودخانه‌های اصلی منطقه مقدار NSE بیش از 72/0 درصد و ضریب R2 تمامی حوضه‏ها بیشتر از 64/0 درصد بوده است. همچنین، برای صحت‌سنجی بین داده‏های مشاهداتی و شبیه‏سازی‏شده از بازۀ زمانی بیشترین دبی‏های حداکثر (2010-2000) استفاده شد. نتایج نشان داد مدل در شبیه‏سازی‏ رواناب‏های دقت بیشتری داشت‌، به ‏طوری ‏که ضریب NSE در حوضۀ نازلوچای به 80/0 درصد و ضریب R2 78/0 درصد برای داده‏های مشاهداتی روزانه رسید. درنهایت، می‏توان نتیجه گرفت که مدل VIC قابلیت زیادی در شبیه‏سازی‏ جریان سطحی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of VIC model in surface runoff simulation and flow routing Case study: Lake Urmia west watersheds

نویسندگان [English]

  • Ghasem Farahmand 1
  • Shariar Khaledi 2
  • Manijeh Gharodi tali 2
  • Behzad Hessari 3
1 Ph.D. urban climatology shahid Beheshti University of Tehran
2 Professor of Natural Geography, Shahid Beheshti University
3 Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]

One of the semi-distributed models that has been considered by researchers in the last decade is the hydrological model of variable infiltration capacity (VIC). The study aim was evaluating the efficiency of VIC model in simulated runoff and flow of rivers in Urmia city overlooking Lake Urmia, including Nazlochyi, Rozeh Chay, Shahrchay and Barandozchay. ERA5 meteorological data was used to achieve this goal. The indices used in the present study to validate the rainfall input data include (R2, TRMSE, NSE). The results of satellite meteorological data surveys with observational data have acceptable results. More precisely, the probability index of POD detection in all stations in the region is above %80. The Khoy synoptic station in the north of the study area is more than %95. Also, the correlation between maximum and minimum temperature data is above %93. After forming the hydrological and mathematical model of the area, the calibration of the observed runoff of the sub-basins with the runoff simulated by the VIC model was investigated. The surveying showed that in all major rivers in the region, the NSE value was above %72 and the R2 coefficient of all basins was more than %64. Also, for validation between observational and simulated data, the maximum flow rate (2010-2000) was used and the results showed that the model was more accurate in simulating maximum runoff, so that the NSE coefficient in the Nazlochay basin was %80 and the coefficient R2 was %78 for daily observational data.

کلیدواژه‌ها [English]

  • Variable Infiltration Capacity Hydrological Model
  • Flood management
  • Meteorological Data ERA5
  • Urmia Lake
[1]. IPCC: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press. 2007: 1-8.
[2]. Arnold CL, Gibbons JC, Impervious surface coverage: The emergence of a key environmental indicator. J. of the American Planning Association. 1996; 62(2):243-258.
[3]. Walsh CJ, Roy AH, Feminella JW, Nottingham PD, Groffman PM, Morgan RP. The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Ethnological Soc. 2005; 24(3):706-723.
[4]. Sepehr A, Kavian R, Classification of tolerance of urban metropolitan areas of Mashhad to environmental hazards using linear programming of SIMUS periodic interaction. Geography and environmental hazards journal. 2014; (9):125-141.
[5]. Asghari Moghadam MR, Natural Geography of the City (Climate, Water and Flood) Islamic Azad University, Central Tehran Branch. 2005. [Persian]
[6]. Esfandiari F, Rahimi M, Khairizadeh M, Evaluation and spatial prediction of landslide occurrence using statistical models of uncertainty factor and logistic regression (Study area: Khalkhal-Sarcham transportation road), Quantitative Geomorphological Research. 2016; 7(2):19-45. [Persian]
[7]. Ghahroudi Tali M, Vulnerability of railway lines north of Lut plain against floods. Journal of Geography and Environmental Hazards. 2010; 1(2):1-18. [Persian]
[8]. Pandey A, Sahu AK, Generation of Curve Number Using Remote Sensing and Geographic Information System. Water Resources, Map India Conference 2002.
[9]. Hatami Nejad H, Atash Afrooz N, Arvin M, Flood Risk Zoning Using Multi-Criteria Analysis and GIS Case Study: Izeh County, Quarterly Journal of Crisis Prevention and Management. 2015; 7(2):44-57. [Persian]
[10]. Hosseinzadeh SR, Khaneh Bad M, Khosravi A, Hazard zoning of urban floods using paleosyllabic hydrological data (Case study: Kalat Naderi, Khorasan Razavi), Quarterly Journal of Quantitative Geomorphological Research. 2014; 3(1):20-36. [Persian]
[11]. Liang X, Lettenmaier DP, Wood EF, Burges SJ, A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research, 1997; 99(7):415-428.
[12]. Scheidegger JM, Jackson CR, Muddu S, Tomer SK, Filgueira R, Integration of 2D Lateral Groundwater Flow into the Variable Infiltration Capacity (VIC) Model and Effects on Simulated Fluxes for Different Grid Resolutions and Aquifer Diffusivities. Water. 2021; (13):1-24.
[13]. Majumder R, Walid R, Zheng J, Assessing Water Budget Sensitivity to Precipitation Forcing Errors in Potomac River Basin Using the VIC Hydrologic Model CyberTraining: Big Data High-Performance Computing Atmospheric Sciences. Department of Mathematics and Statistics University of Maryland Baltimore County. 2019.
[14]. Markert KN, spatial modeling of land cover/land use change and its effects on hydrology within the Lower Mekong Basin, in Land-Atmospheric Research Applications in South and Southeast Asia. 2018; (2):667-698.
 
[15]. Mallakpour I, Sadegh M, AghaKouchak A, A new normal for streamflow in California in a warming climate: Wetter wet seasons and drier dry seasons. Journal of Hydrology. 2018; (567):203-211.
[16]. Koohi S, Azizian A, Broca L, Investigating the Performance of Reanalyzed Models of Earth2Observe Base and VIC-3L Land Surface Model in Estimating Runoff Outflow from Watersheds, Journal of Soil and Water Resources Conservation. 2017; 8(4):117-132. [Persian]
[17]. Design and Planning Consulting Engineers, Urmia City Master Plan Volume 2. 2008. [Persian]
 
[18]. Andreadis KM, Lettenmaier DP, Assimilating remotely sensed snow observations into a macroscale hydrology model. Advances in water resources. 2006; 29(6):872-886
[19]. Lohmann D, NOLTE‐ HOLUBE R, Raschke E. A large‐ scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus A. 1996; 48(5):708-721.
[20]. Hosseinzadeh MM, Imeni S, Hydrological modeling of Quchak-Rudak watershed using HEC-HMS model, Earth Knowledge Research. 2014;7(25):31-43. [Persian]