پتانسیل‌سنجی خشک‌سالی با استفاده از شاخص‌های سنجش از دور و شبکۀ عصبی مصنوعی (مطالعۀ موردی: استان کرمانشاه)

نوع مقاله : پژوهشی

نویسندگان

1 استادیار، گروه کاربرد هوافضا در محیط زیست، مرکز زیست فضا و محیط زیست، پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری

2 پژوهشگر، گروه کاربرد هوافضا در محیط زیست، مرکز زیست فضا و محیط زیست، پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری

10.22059/ije.2022.339610.1613

چکیده

خشکسالی، یک دورۀ ممتد کمبود بارش است که موجب بروز خسارت و کاهش عملکرد در محصولات زراعی می‏شود و بر کیفیت و کمیت منابع آب و کشاورزی منطقه تأثیر مستقیم دارد. فناوری سنجش ‏از دور با تلفیق سیستم اطلاعات جغرافیایی (ساج) و با ایجاد امکان دسترسی، پردازش و تفسیر داده‏های مکانی، امکان پایش مطلوب‏تر خشکسالی را فراهم کرده است. هدف این مطالعه، تعیین مناسب‏ترین شاخص‏های سنجش‏ از ‏دوری و ارائۀ یک نمایۀ ترکیبی مبتنی بر روش هوشمند شبکۀ عصبی مصنوعی و درنهایت، استخراج نقشۀ پتانسیل خشکسالی است. بر اساس نتایج، بهترین شاخص‏های سنجش‏ از دور جهت تعیین میزان ریسک بیابان‏زایی در منطقه، شاخص‏های پوشش گیاهی، میزان بارش و دمای سطح زمین هستند. نتایج بر اساس مقادیر شاخص بارش استانداردشده (SPI) به‏دست‏آمده از ایستگاه‏های هواشناسی ارزیابی شدند. بر این اساس، مقدار دقت نتایج روش رگرسیون چندمتغیره، R2=0.62 و شبکۀ عصبی پرسپترون چندلایه R2=0.91 به دست آمد. بنابراین، روش شبکۀ عصبی پرسپترون چندلایه از روش رگرسیون چندمتغیره برای ایجاد یک شاخص ترکیبی خشکسالی توانایی بسیار بیشتری دارد. بر اساس نتایج، در بیشتر مناطق استان کرمانشاه پتانسیل بروز خشکسالی ماهانه وجود دارد. همچنین، پتانسیل خشکسالی سالانه، در مناطق شرقی استان بیشتر مشاهده می‏شود. اسلام‏آباد، سنقر و تا حدودی هرسین، شهرستان‏های دارای خطر پایین وقوع خشکسالی هستند.

کلیدواژه‌ها


[1]. AghaKouchak A, Farahmand A, Melton F, Teixeira J, Anderson M, Wardlow BD, et al. Remote sensing of drought: Progress, challenges and opportunities. 2015;53(2):452-80.
[2]. Lloyd‐Hughes B, Saunders MA. A drought climatology for Europe. International Journal of Climatology: A Journal of the Royal Meteorological Society. 2002;22(13):1571-92.
[3]. Bhuiyan C, Singh R, Kogan F. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation. 2006;8(4):289-302.
[4]. javizadeh s, hejazizadeh z. Analysis of Drought Spatial Statistics in Iran %J Journal of Applied researches in Geographical Sciences. 2019;19(53):251-77.
[5]. Modarres R, Sarhadi A, Burn DHJG, Change P. Changes of extreme drought and flood events in Iran. 2016;144:67-81.
[6]. Rojas OJW, Extremes C. Agricultural extreme drought assessment at global level using the FAO-Agricultural Stress Index System (ASIS). 2020;27:100184.
[7]. AghaKouchak A, Farahmand A, Melton F, Teixeira J, Anderson M, Wardlow BD, et al. Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics. 2015;53(2):452-80.
[8]. Mika J, Horvath S, Makra L, Dunkel Z. The Palmer Drought Severity Index (PDSI) as an indicator of soil moisture. Physics and Chemistry of the Earth, Parts A/B/C. 2005;30(1-3):223-30.
[9]. Olukayode Oladipo E. A comparative performance analysis of three meteorological drought indices. Journal of Climatology. 1985;5(6):655-64.
[10]. Juhasz T, Kornfield J. The Crop Moisture Index: unnatural response to changes in temperature. Journal of applied meteorology. 1978;17(12):1864-6.
[11]. Agnew C. Using the SPI to identify drought. 2000.
[12]. Zargar A, Sadiq R, Naser B, Khan FI. A review of drought indices. Environmental Reviews. 2011;19(NA):333-49.
[13]. Al-Quraishi AMF, Qader SH, Wu W. Drought monitoring using spectral and meteorological based indices combination: a case study in Sulaimaniyah, Kurdistan region of Iraq. Environmental Remote Sensing and GIS in Iraq: Springer; 2020. p. 377-93.
[14]. Huang J, Zhuo W, Li Y, Huang R, Sedano F, Su W, et al. Comparison of three remotely sensed drought indices for assessing the impact of drought on winter wheat yield. International Journal of Digital Earth. 2020;13(4):504-26.
[15]. Park S, Im J, Jang E, Rhee J. Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. Agricultural and forest meteorology. 2016;216:157-69.
[16]. Vermote E, Wolfe R. MOD09GA MODIS/terra surface reflectance daily L2G global 1 km and 500 m SIN grid V006. NASA EOSDIS Land Processes DAAC. 2015.
[17]. Wan Z. University of California Santa Barbara, Simon Hook, Glynn Hulley-JPL and MODAPS SIPS-NASA. MOD11A1 MODIS/Terra Land Surface Temperature and the Emissivity Daily L3 Global 1km SIN Grid NASA LP DAAC. 2015.
[18]. Mission TRM. TRMM (TMPA) Rainfall Estimate L3 3 hour 0.25 degree x 0.25 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). TRMM_3B42_7 html. 2011.
[19]. Jiao W, Zhang L, Chang Q, Fu D, Cen Y, Tong Q. Evaluating an enhanced vegetation condition index (VCI) based on VIUPD for drought monitoring in the continental United States. Remote Sensing. 2016;8(3):224.
 
[20]. Hazaymeh K, Hassan QK. Remote sensing of agricultural drought monitoring: A state of art review. AIMS Environ Sci. 2016;3:604-30.
[21]. Jiao W, Wang L, McCabe MF. Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sensing of Environment. 2021;256:112313.
[22]. Belal A-A, El-Ramady HR, Mohamed ES, Saleh AM. Drought risk assessment using remote sensing and GIS techniques. Arabian Journal of Geosciences. 2014;7(1):35-53.
[23]. Gaikwad SV, Kale KV, Kulkarni SB, Varpe AB, Pathare GN. Agricultural drought severity assessment using remotely sensed data: a review. International Journal of Advanced Remote Sensing and GIS. 2015;4(1):1195-203.
[24]. Vicente-Serrano SM. Evaluating the impact of drought using remote sensing in a Mediterranean, semi-arid region. Natural Hazards. 2007;40(1):173-208.
[25]. West H, Quinn N, Horswell M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sensing of Environment. 2019;232:111291.
[26]. Bento VA, Trigo IF, Gouveia CM, DaCamara CC. Contribution of land surface temperature (TCI) to vegetation health index: A comparative study using clear sky and all-weather climate data records. Remote Sensing. 2018;10(9):1324.
[27]. Amalo LF, Hidayat R, editors. Comparison between remote-sensing-based drought indices in East Java. IOP Conference Series: Earth and Environmental Science; 2017: IOP Publishing.
[28]. Rostami N, Fathizad HJA. Spatial and temporal changes of land uses and its relationship with surface temperature in western Iran. 2022;35(4):701-17.
[29]. Masitoh F, Rusydi A, editors. Vegetation Health Index (VHI) analysis during drought season in Brantas Watershed. IOP Conference Series: Earth and Environmental Science; 2019: IOP Publishing.
[30]. Rhee J, Im J, Carbone GJJRSoe. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. 2010;114(12):2875-87.
[31]. Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe AJES, Environment. Using drought indices to model the statistical relationships between meteorological and agricultural drought in Raya and its environs, Northern Ethiopia. 2018;2(2):265-79.
[32]. Nemani R, Pierce L, Running S, Goward S. Developing satellite-derived estimates of surface moisture status. Journal of Applied Meteorology and Climatology. 1993;32(3):548-57.
[33]. Janalipour M, Mohammadzadeh A. A fuzzy-ga based decision making system for detecting damaged buildings from high-spatial resolution optical images. Remote Sensing. 2017;9(4):349.
[34]. Gatz DF, Smith L. The standard error of a weighted mean concentration—I. Bootstrapping vs other methods. Atmospheric Environment. 1995;29(11):1185-93.
[35]. Tehrani NA, Janalipour M, Babaei HJRSiESS. Estimating Water Surface Chlorophyll-a Concentration by Big Remote Sensing Data in the Persian Gulf, Bushehr. 2021;4(1):87-95.
[36]. Mousavi SA, Janalipour M, Abbaszadeh Tehrani NJIJoRS, GIS. Estimation of crop area cultivation using Sentinel-2 satellite imagery (Case study: Chaypara area above Zanjan city). 2021.
[37]. Bagheri M, Jelokhani Noaryki M, Bagheri K. Investigation of the land potential of Kermanshah province for rainfed wheat cultivation using artificial neural network %J Journal of RS and GIS for Natural Resources. 2018;8(4):36-48.
[38]. Gomez H, Kavzoglu T, Mather P, editors. Artificial neural network application in landslide hazard zonation in the Venezuelan Andes. 15th International Conference on Geomorphology, Tokyo, Japan; 2001.
[39]. Kolahchi A, Eftekhar Dadkhah M, Mirzai M. Investigation of the effect of drought on water resources using TRMM satellite imagery in Kermanshah Province %J Watershed Engineering and Management. 2021;13(1):65-80.
[40]. SOLTANI M, soltani A, Kalehhouei M, SOLAIMANI KJGD. Monitoring the regional drought using the LANDSAT images Case Study: The City of Kermanshah. 2019;28(109 #R00459):-.
[41]. SHAHBAZI K, HESHMATI M, SAIEEDIFAR ZJDM. Investigating the Effect of Climate Change on Drought and Desertification Risk in Kermanshah Province. 2021;8(16 #T001304):-.
دوره 9، شماره 2
تیر 1401
صفحه 387-402
  • تاریخ دریافت: 08 اسفند 1400
  • تاریخ بازنگری: 30 فروردین 1401
  • تاریخ پذیرش: 11 اردیبهشت 1401
  • تاریخ اولین انتشار: 01 تیر 1401
  • تاریخ انتشار: 01 تیر 1401