تعیین سهم ویژه منابع رسوب معلق در آبخیز واز با استفاده از ویژگی‌های ژئوشیمیایی

نوع مقاله : پژوهشی

نویسندگان

1 دانش‏آموختۀ دکتری گروه مهندسی آبخیزداری، دانشکدۀ منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 دانشیار گروه مهندسی آبخیزداری، دانشکدۀ منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 استاد گروه مهندسی آبخیزداری، دانشکدۀ منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

4 دانشیار گروه مهندسی آبخیزداری، دانشکدۀ منابع طبیعی، دانشگاه تربیت مدرس، نور

چکیده

اطلاعات دقیق در مورد منابع رسوب معلق در سامانه‏های رودخانه‏ای ضروری است، زیرا افزایش عرضۀ رسوبات ریزدانه به یک سامانۀ رودخانه‌ای از طریق فعالیت‏های انسانی منجر به بارگذاری بیش از حد رسوب معلق در رودخانه‏ها می‏شود که بر کیفیت آب و سلامت بوم‏سازگان تأثیر منفی می‏گذارد. همچنین ،کمی‏سازی سهم نسبی منابع مختلف رسوبات معلق به ‏منظور تعیین بهترین شیوه‏های مدیریت کنترل رسوب معلق اهمیت زیادی دارد. بنابراین، نیاز فزاینده‏ای به اطلاعات قابل ‏اعتماد در مورد منشأ رسوبات ریزدانۀ حمل‏شده توسط رودخانه‏ها وجود دارد. هدف از این مطالعه، منشأیابی رسوبات معلق با استفاده از ویژگی‏های ژئوشیمیایی با استفاده از بسته Fingerpro نرم‌افزار R در کاربری/ پوشش‏های مختلف اراضی حوضۀ آبخیز واز در استان مازندران است. در پژوهش حاضر 30 نمونه خاک از کاربری‏های مختلف اراضی شامل جنگل، مرتع، اراضی کشاورزی و همچنین، اراضی کناره‏های آبراهه به‏ عنوان منابع تولید رسوب و یک نمونه رسوب معلق در خروجی حوضه برداشت شده و ویژگی‏های ژئوشیمیایی نمونه‏های خاک و رسوب شامل 59 عنصر با استفاده از دستگاه ICP-OES GBC Integra اندازه‏گیری شد. سپس، ردیاب‏های پایا و مناسب از بین 59 عنصر، برای منشأیابی رسوبات معلق با استفاده آزمون‏های آماری دامنه، کروسکال والیس و تحلیل تابع تفکیک، در بستۀ Fingerpro نرم‌افزار R شامل K،Li، P، V، Cr، Fe، Cu، Ga، Ge، Rb، Sb، Ba، Nd، Ta‌ و Wانتخاب شد. همچنین، نتایج تفکیک سهم کاربری‏ها/پوشش‏های اراضی در تولید رسوب معلق با شاخص نکویی برازش 68/80 نشان داد سهم اراضی کشاورزی، مرتع، جنگل و کناره‏های آبراهه به‌ترتیب 18/0، 90/7، 69/5 و 21/86 درصد است. در نهایت، سهم ویژۀ هر منبع در تولید رسوب معلق به ازای هر هکتار نیز محاسبه شد و نتایج نشان داد کناره‏های آبراهه و جنگل با سهم ویژه 513/0 و 0007/0 درصد به ازای هر هکتار به‏ترتیب بیشترین و کمترین مشارکت را در تولید رسوب معلق در هر هکتار دارند. نتایج همچنین نشان داد سهم ویژۀ اراضی کنار آبراهه به‏‏ترتیب 62/320، 61/394 و 85/732 برابر سهم ویژۀ کاربری‏های کشاورزی، مرتع و جنگل است. نتایج منشأیابی با روش ژئوشیمیایی در این بررسی، اطلاعات ارزشمندی دربارۀ سهم منابع تولید رسوب معلق به ‏منظور اجرای برنامه‏های مدیریتی برای حفاظت خاک و آب در اختیار مدیران و برنامه‏ریزان قرار می‏دهد.

کلیدواژه‌ها

موضوعات


[1]. Vercruysse K, Grabowski RC, Rickson RJ. Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth-Sci. Rev. 2017; 166: 38–52.
[2]. Gray AB. The impact of persistent dynamics on suspended sediment load estimation. Geomorphology. 2018 ; 322: 132–147.
[3]. Fatahi A, Gholami H, Esmaeilpour Y, Fathabadi A. Fingerprinting the spatial sources of fine-grained sediment deposited in the bed of the Mehran River, southern Iran. Scientific Reports, 2022; 12(1): 1-17.‏ [4]. Duan W, Takara K, He B, Luo P, Nover D, Yamashiki Y. Spatial and temporal trends in estimates of nutrient and suspended sediment loads in the Ishikari River, Japan, 1985 to 2010. Sci. Total Environ. 2013; 461–462: 499–508.
[5]. Collins AL. Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes. J. Soils Sediments. 2020; 20(12): 4160–4193.
[6]. Zeiger S, Hubbart JA. Quantifying suspended sediment flux in a mixed-land-use urbanizing watershed using a nested-scale study design. Sci. Total Environ. 2016; 542: 315–323.
[7]. Ferreira CSS, Walsh RPD, Kalantari Z, Ferreira AJD. Impact of Land-Use Changes on Spatiotemporal Suspended Sediment Dynamics within a Peri-Urban Catchment. 2021; 12(3): 655-668.
[8]. Shojaeezadeh SA, Nikoo MR, McNamara JP, AghaKouchak A, Sadeghi M. Stochastic modeling of suspended sediment load in alluvial rivers. Adv. Water Resour. 2018; 119: 188–196.
 [9]. Wijesiri B, Liu A, Deilami K, He B, Hong N, Yang B, Zhao X, Ayoko G, Goonetilleke A. Nutrients and metals interactions between water and sediment phases: An urban river case study. Environ. Pollut. 2019; 251: 354–362
[10]. Mukherjee DP, Dynamics of metal ions in suspended sediments in Hugli estuary, India and its importance towards sustainable monitoring program. Jornal of Hydrology. 2014; 517: 762–776.
[11]. Russell KL, Vietz, GJ, Fletcher TD. Global sediment yields from urban and urbanizing watersheds. Earth-Sci. Rev. 2017; 168: 73–80.
[12]. Mao L, Carrillo R. Temporal dynamics of suspended sediment transport in a glacierized Andean basin. Geomorphology. 2017; 287: 116–125.
 
[13]. Gray AB, Pasternack GB, Watson EB, Warrick JA, Goñi MA. Effects of antecedent hydrologic conditions, time dependence, and climate cycles on the suspended sediment load of the Salinas River, California. J. Hydrol. 2015; 525: 632–649
[14]. Ehteram M, Ghotbi S, Kisi O, Ahmed AN, Salih GHA, Fai CM, Krishnan, M, EL-Shfie A. River Suspended Sediment Prediction Using Improved ANFIS and ANN Models: Comparative Evaluation of the Soft Computing Models. Water. 2019; 11: 1-12.
[15]. Collins AL, Pulley S, Foster IDL, Gelli A, Porto P, Horowitz AJ. Sediment source fingerprinting as an aid to catchment management: A review of the current state of knowledge and a methodological decision-tree for end-users. J. Environ. Manag. 2017; 194: 86–108.
[16]. Collins AL, Walling DE. Documenting catchment suspended sediment sources: problems, approaches and prospects. Prog. Phys. Geogr. 2004; 28 (2): 159196.
[17]. Huisman NLH, Karthikeyan KG, Lamba J, Thompson AM, Peaslee G. Quantification of seasonal sediment and phosphorus transport dynamics in an agricultural watershed using radiometric fingerprinting techniques. Journal Soils Sediments. 2013; 13: 1724–1734.
[18]. Wilson, CG, Kuhnle RA, Bosch DD, Steiner JL, Starks PJ, Tomer MD, Wilson GV. Quantifying relative contributions from sediment sources in Conservation Effects Assessment Project watersheds. J. Soil Water Conserv. 2008; 63: 523–532.
[19]. Miller JR, Lord M, Yurkovich S, Mackin G, Kolenbrander L. Historical trends in sedimentation rates and sediment provenance, fairfield lake, western north carolina1. Journal of Water Resour. Assoc. 2005; 41: 1053–1075.
[20]. Mzuza MK, Weiguo Z, Chapola LS, Tembo M, Kapute F. Determining sources of sediments at Nkula Dam in the Middle Shire River, Malawi, using mineral magnetic approach. Journal Earth Since. 2017; 126: 23–32.
[21]. Martínez-Carreras N, Krein A, Gallart F, Pfister L, Hoffmann L, Owens PN. Assessment of different colour parameters for discriminating potential suspended sediment sources and provenance: A multi-scale study in Luxembourg. Geomorphology. 2010; 118: 118–129.
[22]. Rhoton FE, Emmerich WE.; DiCarlo, D.A.; McChesney, D.S.; Nearing, M.A.; Ritchie, J.C. Identification of Suspended Sediment Sources Using Soil Characteristics in a Semiarid Watershed. Soil Sci. Soc. Am. J. 2008; 72: 1102-11023.
[23]. Haddadchi A, Ryder DS, Evrard O, Olley J. Sediment fingerprinting in fluvial systems: review of tracers, sediment sources and mixing models. International Journal of Sediment Resource. 2013; 28 (4), 560578.
[24]. Bahadori M. A novel approach of combining isotopic and geochemical signatures to differentiate the sources of sediments and particulate nutrients from different land uses. Sci. Total Environ. 2019; 655: 129140.
[25]. Biddulph M, Collins A, Foster ID, Holmes N. The scale problem in tackling diffuse water pollution from agriculture: insights from the Avon Demonstration Test Catchment program in England. River Res. Appl. 2015; (10): 15271538
[26]. Haddadchi A, Nosrati K, Ahmadi F. Differences between the source contribution of bed material and suspended sediments in a mountainous agricultural catchment of western Iran. Catena. 2014; 116: 105-113.
[27]. Nosrati K, Haddadchi A, Collins AL, Jalali S, Zare MR. Tracing sediment sources in a mountainous forest catchment under road construction in northern Iran: comparison of Bayesian and frequentist approaches. Environ. Sci. Pollut. Res. 2018b; 25 (31):3097930997.
[28]. Mohammadi M, Khaledi Darvishan AV, Dinelli E, Bahramifar N, Alavi S J. How does land use configuration influence on sediment heavy metal pollution? Comparison between riparian zone and sub-watersheds. Stochastic Environmental Research and Risk Assessment. 2021; 1-16.
[29]. Lizaga I, Latorre B, Gaspar L, Navas A. FingerPro: an R package for tracking
the provenance of sediment. Water Resour. Manag. 2020; 272: 111020.
[30]. Lizaga I, Gaspar L, Blake WH, Latorre B, Navas A. Fingerprinting changes of source apportionments from mixed land uses in stream sediments before and after an exceptional rainstorm event. Geomorphology. 2019a; 341: 216–229.
[31]. Lizaga I, Bodé S, Gaspar L, Latorre B, Boeckx P, Navas A.. Legacy of historic land cover changes on sediment provenance tracked with isotopic tracers in a Mediterranean agroforestry catchment. Journal of Environmental Management. 2021; 288: 1-11.
[32]. Khaledi Darvishan, A.A., S.H.R., Sadeghi., L, Gholami. Effect of Erosion Sensitivity and Land Use on Morphometric Characteristics of Bed Sediment (Case Study: Vazrood River). Journal of Soil and Water Knowledge. 2011; 21 (4): 139-151. (In Persian)
[33]. Gholami, Sh.A., M., Habibnejad Roshan., M., Nouripour. Investigating the effect of population increase on land use change (Case study of Vaz River basin, Noor city). Iranian Natural Ecosystems Quarterly, 1 and 2: Spring and Summer: 2015; 56-37. (In Persian)
[34]. Franz C, Makeschin F, Weiß H, Lorz C. Sediments in urban river basins: Identification of sediment sources within the Lago Paranoá catchment, Brasilia DF, Brazil–using the fingerprint approach. Science of the Total Environment. 2014; 466: 513-523.
[35]. Lizaga I, Quijano L, Gaspar L, Ramos MC, Navas A.. Linking land use changes to variation in soil properties in a Mediterranean mountain agroecosystem. Catena. 2019b; 172: 516–527.
[36]. Walling DE, Owens PN, Leeks GJL. Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK. Hydrol. Process. 1999; 13: 955–975.
[37]. Blake WH, Boeckx P, Stock BC, Smith HG, Bodé S, Upadhayay HR, Gaspar L, Goddard R, Lennard AT, Lizaga I, Lobb DA, Owens PN, Petticrew EL, Kuzyk ZZA, Gari BD, Munishi L, Mtei K, Nebiyu A, Mabit L, Navas A, Semmens BX. A deconvolutional Bayesian mixing model approach for river basin sediment source apportionment. Scientific reports. 2018; 8(1): 1-12.
[38]. Vale, S., Swales, A., Smith, H. G., Olsen, G., & Woodward, B. (2022). Impacts of tracer type, tracer selection, and source dominance on source apportionment with sediment fingerprinting. Science of The Total Environment, 831, 154832.‏
[39]. Chen J, Shi Z, Wen A, Yan D, Chen T. 137Cs-based variation of soil erosion in vertical zones of a small catchment in Southwestern China.
International. Journal Environmental. Resource. Public Health. 2019; 16: 71-85.
[40]. Gaspar L, Blake WH, Smith HG, Lizaga I, Navas A. Testing the sensitivity of a multivariate Mixing model using geochemical fingerprints with artificial mixtures. Geoderma. 2019; 337:498–510.
[41]. Collins AL, Walling DE, Webb L, King P. The application of fallout radionuclides to determine the dominant erosion process in water supply catchments of subtropical South-east Queensland, Australia, Joanne and Smolders, Kate. Geoderma. 2010; 155: 249–261.
[42] Malhotra K. Lamba J. Shepherd S. 2020. Sources of stream bed sediment in an urbanized watershed. Catena. 184:104-120.
[43]. Olley J, Burton J, Smolders K, Pantus F, Pietsch T. The application of fallout radionuclides to determine the dominant erosion process in water supply catchments of subtropical South-east Queensland, Australia. Hydrol. Process. 2013; 27: 885–895.
[44]. Chapman AS, Foster IDL, Lees JA, Hodgkinson RA, Jackson RH. Particulate phosphorus transport by sub-surface drainage from agricultural land in the UK. Environmental significance at the catchment and national scale. Sci. Total Environ. 2001; 266: 95–102.
[45]. Russell MA, Walling DE, Hodgkinson RA. Suspended sediment sources in two small lowlanagricultural catchments in the UK. Jornal Hydrolgy. 2001; 252, 1–24.
[46]. Walling, D E, 2005. Tracing suspended sediment sources in catchments and river systems. Sci. Total Environ. 344, 159–184.
[47]. Astorga R. Garcias T. Borgatello G. Velasco H. Padilla R. Dercon G. Mabit L. Use of geochemical fingerprints to trace sediment sources in an agricultural catchment of Argentina. International Soil and Water Conservation Research. 2020; 8(4): 410-417.
دوره 9، شماره 4
دی 1401
صفحه 705-718
  • تاریخ دریافت: 20 تیر 1401
  • تاریخ بازنگری: 28 مرداد 1401
  • تاریخ پذیرش: 28 آذر 1401
  • تاریخ اولین انتشار: 01 دی 1401
  • تاریخ انتشار: 01 دی 1401