کارایی مدل هیدرولوژیکی HEC-HMS در شبیه‌سازی فرایند بارش‌ـ رواناب در آبخیزهای بالادست شهر گنبد

نوع مقاله : پژوهشی

نویسندگان

1 علوم و مهندسی آبخیزداری، دانشکدۀ مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 گروه آبخیزداری، دانشکدۀ مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 گروه مدیریت مناطق بیابانی، دانشکدۀ مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

4 گروه منابع طبیعی، دانشکدۀ کشاورزی و منابع طبیعی و عضو پژوهشکدۀ مدیریت آب، دانشگاه محقق اردبیلی

10.22059/ije.2023.359860.1734

چکیده

وقوع رخدادهای سیل بزرگ مانند سیل 27 اسفند 1397 در شهر گنبد به‏ طور معمول با خسارت‏های اجتماعی‌ـ اقتصادی و اکولوژیک همراه است. هدف پژوهش حاضر، شبیه‏سازی جریان سیل با مدل هیدرولوژیکی HEC-HMS و ارزیابی عملکرد آن در خروجی آبخیز ارازکوسه مشرف به شهر گنبد و زیرحوضه‏های بالادست آن (آبخیزهای مینودشت و نوده ‏خاندوز) است. مدل HEC-HMS با روش‏های شمارۀ منحنی SCS، هیدروگراف واحد SCS و ماسکینگام کانژ اجرا شد. پارامترهای شمارۀ منحنی، تلفات اولیه، زمان تأخیر و ضریب زبری مانینگ برای ایستگاه‏های ارازکوسه، لزوره و نوده واسنجی شد. سپس، از میانگین پارامترهای واسنجی‌شده، برای اعتبارسنجی مدل در ایستگاه‏های مورد بررسی استفاده شد. نتایج آزمون حساسیت پارامترهای ورودی نشان می‏دهد پارامتر شمارۀ منحنی بیشترین تأثیر را روی عملکرد مدل دارد. شکل هیدروگراف‏های شبیه‏سازی‌شده در مرحلۀ اعتبارسنجی نشان می‏دهد مدل در برآورد مؤلفۀ دبی اوج برای ایستگاه ارازکوسه دارای کم‏تخمینی است. در حالی ‏که شاخص‏های آماری NSE، R2 و KGE برای رویدادهای اعتبارسنجی برای ایستگاه ارازکوسه به‏ترتیب برابر با 81/0، 89/0 و 67/0، برای ایستگاه نوده‏ به‏ترتیب برابر با 85/0، 91/0 و 74/0 و برای ایستگاه لزوره به‏ترتیب برابر 62/0، 72/0 و 61/0 به دست آمد که عملکرد قابل قبول مدل را نشان می‌دهد. با توجه به عملکرد مدل HEC-HMS در شبیه‏سازی هیدروگراف جریان برای آبخیز ارازکوسه و آبخیزهای بالادست آن (مینودشت و نوده‏ خاندوز)، می‏توان از مدل برای پیش‏بینی اثرات هیدرولوژیک اعمال سناریوهای مختلف کاهش ریسک سیل در آبخیزهای بالادست شهر گنبد استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The HEC-HMS hydrological model performance in the rainfall-runoff process simulation for the upstream watersheds of Gonbad, Iran

نویسندگان [English]

  • Shahnaz Mirzaei 1
  • Amir Sadoddin 2
  • Abdolreza Bahremand 2
  • Majid Ownegh 3
  • Raoof Mostafazadeh 4
1 Watershed ‎Management Science and Engineering, Gorgan University of Agricultural Sciences & Natural Resources, Iran
2 Department of Watershed Management, Gorgan University of Agricultural Sciences & Natural Resources, Iran
3 Department of Arid Zone Management, Gorgan University of Agricultural Sciences & Natural Resources, Iran
4 Department of Natural Resources, University of Mohaghegh Ardabili, Iran
چکیده [English]

Large flood events occurrence such as the 18 March 2019 flood event in the city of Gonbad in Golestan Province has been often associated with socioeconomic and ecologic damages. The aim of this research is to simulate flood hydrograph using the HEC-HMS hydrological model and to evaluate model performance at the Arazkuseh Watershed outlet, located in the vicinity of Gonbad, and also for the upstream tributaries namely the Minodasht and the Nodeh Khandooz Watersheds. The HEC-HMS model was run by applying the SCS-Curve Number, the SCS-Unit Hydrograph, and the Muskingum-Cunge methods. The parameters of CN, initial abstraction, lag time, and the Manning's roughness coefficient were calibrated for the river gauge stations. The averaged calibrated parameters were used to validate the model at the gauge stations. The sensitivity analysis indicates that CN has the greatest influence on the model performance. The shapes of the simulated hydrographs in the validation stage show that the model underestimates the peak flows for the Arazkuseh Station. Whereas, the statistical indices of NSE, R2 and KGE for the validated hydrographs at the Arazkuseh Station were 0.81, 0.89 and 0.67, for the Nodeh Station were 0.85, 0.91 and 0.74, and for the Lazoreh Station identified as 0.62, 0.72 and 0.61, respectively. The analysis indicates the acceptable performance of the model. Considering the performance of the HEC-HMS model for the Arazkuseh Watershed and its upstream tributaries, the model can be used to predict the hydrological impacts of applying flood risk reduction scenarios in the upstream watersheds of Gonbad.

کلیدواژه‌ها [English]

  • Hydrological impacts
  • Flood hazard
  • The Muskingum-Cunge flood routing method
  • HEC-HMS
  • The Arazkuseh Watershed
  • Abdessamed D, and Abderrazak B. Coupling HEC‑RAS and HEC‑HMS in rainfall–runoff modeling and evaluating floodplain inundation maps in arid environments: case study of Ain Sefra city, Ksour Mountain. SW of Algeria. Environmental Earth Sciences. 2019; 78(586): 1-17.
  • Bhusal A, Parajuli U, Regmi S, and Kalra A. Application of Machine Learning and process-based models for Rainfall-Runoff simulation in DuPage River Basin, Illinois. Hydrology. 2022; 9(117): 1-20.
  • Meenu R, Rehana S, and Mujumdar P.P. Assessment of hydrologic impacts of climate change in Tunga–Bhadra river basin, India with HEC-HMS and SDSM. Hydrological Processes. 2012; 27(11): 1572-1589.
  • Teng F, Huang W, and Ginis I. Hydrological modeling of storm runoff and snowmelt in Taunton River Basin by applications of HEC-HMS and PRMS models. Natural Hazards. 2018; 91: 179–199.
  • El Alfy M. Assessing the impact of arid area urbanization on flash floods using GIS, remote sensing, and HEC-HMS rainfall–runoff modeling. Hydrology Research. 2016; 47.6: 1142-1160.
  • Namara W.G, Damisse T.A, and Tufa F.G. Application of HEC‑RAS and HEC‑GeoRAS model for flood inundation mapping, the case of Awash Bello flood plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. Modeling Earth Systems and Environment. 2022; 8: 1449-1460.
  • Barbosa J.H.S, Fernandes A.L.T, Lima A.D, and Assis L.C. The influence of spatial discretization on HEC-HMS modelling: a case study. International Journal of Hydrology. 2019; 3(5): 442-449.
  • Verma A.K, Jha M.K, and Mahana R.K. Evaluation of HEC-HMS and WEPP for simulating watershed runoff using remote sensing and geographical information system. Paddy Water Environ. 2010; 8: 131-144.
  • Koneti S, Sunkara S.L, and Roy P.S. Hydrological modeling with respect to impact of Land-Use and Land-Cover change on the runoff dynamics in Godavari River Basin using the HEC-HMS model. International Journal of Geo-Information. 2018; 7(206): 1-17.
  • Halwatura D, and Najim M.M.M. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environmental Modelling & Software. 2013; 46: 155-162.
  • Bhuiyan H.A.K.M, McNairn H, Powers J, and Merzouki A. Application of HEC-HMS in a cold region watershed and use of RADARSAT-2 soil moisture in initializing the model. Hydrology. 2017; 4(9): 1-19.
  • Cheng X, Ma X, Wang W, Xiao Y, Wang Q, and Liu X. Application of HEC‑HMS parameter regionalization in small watershed of hilly area. Water Resources Management. 2021; 35: 1961–1976.
  • Cacal J.C, Austria V.A, and Taboada E.B. Extreme event-based rainfall-runoff simulation utilizing GIS techniques in Irawan watershed, Palawan, Philippines. Civil Engineering Journal. 2023; 9(1): 220-232.
  • Majidi A, and Shahedi K. Simulation of rainfall-runoff process using Green-Ampt method and HEC-HMS Model (Case Study: Abnama Watershed, Iran). Hydraulic Engineering. 2012; 1(1): 5-9.
  • Natarajan S, and Radhakrishnan N. Simulation of extreme event‑based rainfall–runoff process of an urban catchment area using HEC‑HMS. Modeling Earth Systems and Environment. 2019; 5: 1867-1881.
  • Ghonchepour D, Sadoddin A, Bahremand A, Croke B, Jakeman A, and Salmanmahiny A. A methodological framework for the hydrological model selection process in water resource management projects. Natural Resource Modeling. 2021; 34(3): 1-31.
  • Scharffenberger W.A, and Fleming M.J. Hydrologic modeling system HEC-HMS User’s. Manual, USACE. 2010; 1-306.
  • Kaffas K, and Hrissanthou V. Application of a continuous rainfall-runoff model to the basin of Kosynthos river using the hydrologic software HEC-HMS. Global NEST Journal. 2014; 16(1): 188-203.
  • Moraes T.C, Santos, V.J, Calijuri M.L, and Torres F.T.P. Effects on runoff caused by changes in land cover in a Brazilian southeast basin: evaluation by HEC‑HMS and HEC‑GEOHMS. Environmental Earth Sciences 2018; 77(250): 1-14.
  • Chathuranika I.M, Gunathilake M.B, Baddewela P.K, Sachinthanie E, Babel M.S, Shrestha S, Jha M.K, and Rathnayake U.S. Comparison of two hydrological models, HEC-HMS and SWAT in runoff estimation: Application to Huai Bang Sai Tropical Watershed, Thailand. Fluids. 2022; 7(267): 1-14.
  • Chiang S, Chang C.H, and Chen B. Comparison of rainfall-runoff simulation between Support Vector Regression and HEC-HMS for a rural watershed in Taiwan. Water. 2022; 14(191): 1-18.
  • Dariane A.B, Javadianzadeh M.M, and James D. Developing an Efficient Auto-Calibration Algorithm for HEC-HMS Program. Water Resource Management. 2016; 30: 1923-1937.
  • Kamali B, Jamshid Mousavi S, and Abbaspour K.C. Automatic calibration of HEC-HMS using single-objective and multi-objective PSO algorithms. Hydrological Processes. 2013; 27: 4028–4042.
  • Garmeh R, Faridhosseini A, Hasheminia S.M, and Hojjati A. Calibration and validation parameter of hydrologic model HEC-HMS using Particle Swarm Optimization algorithms – Single Objective. Water and Soil. 2015; 29(3): 615-626. [Persian]
  • Mirzaei SH, Esmali Ouri A, Mostafazadeh R, Ghorbani A, and Mirzaei S. Flood hydrograph simulation and analysis of its components with landscape metrics in Amoughin watershed, Ardabil Province. Ecohydrology. 2018; 5(2): 357-372. [Persian]
  • Heidari Chenari F, Fazloula R, and Nikzad Tehrani E. Calibration and evaluation of HEC-HMS hydrological model parameters in simulation of single Rainfall-Runoff events (Case study: Tajan Watershed). Watershed Management Research. 2023; 13(26): 69-81. [Persian]
  • Mirghasemi S.H, Banejad H, and Farid Hosseini A. Application of remote sensing in hydraulic modeling and determination of riverbed boundaries (Case study: Ardak River). RS & GIS for Natural Resources. 2023; 14(1): 24-48. [Persian]
  • Solaimani K, Sharifipour M, and Abdoli Boozhani S. Flood Damage Detection Algorithm Using Sentinel-2 Images (Case Study: Golestan Flood of March 2019). Ecohydrology. 2020; 7(2): 303-312. [Persian]
  • Abushandi E, and Merkel B. Modelling rainfall runoff relations using HEC-HMS and IHACRES for a single rain event in an arid region of Jordan. Water Resource Management. 2013; 27: 2391-2409.
  • USDA, Natural Resources Conservation Service. Estimation of direct runoff from storm rainfall. Chapter 10. Part 630 Hydrology. National Engineering Handbook. 2004; 79p.
  • Aqnouy M, Ahmed M, Ayele G.T, Bouizrou I, Bouadila A, and El Messari J.E.S. Comparison of hydrological platforms in assessing rainfall-runoff behavior in a Mediterranean watershed of Northern Morocco. Water. 2023; 15(447): 1-18.
  • Subramanya K. Engineering Hydrology, 3th Edition, The McGraw-Hill Companies. 2008; 434 pages.
  • Azari M, Saghafian B, Moradi H.R, and Faramarzi M. Effectiveness of soil and water conservation practices under climate change in the Gorganroud basin, Iran. Clean-Soil, Air, Water. 2017; 45(8): 1-12.
  • Belayneh A, Sintayehu G, Gedam K, and Muluken T. Evaluation of satellite precipitation products using HEC‑HMS model. Modeling Earth Systems and Environment. 2020; 6: 2015-2032.
  • Hamdan A.N.A, Almuktar S, and Scholz M. Rainfall-Runoff modeling using the HEC-HMS model for the Al-Adhaim River Catchment, Northern Iraq. Hydrology. 2021; 8(58): 1-17.
  • USDA, Natural Resources Conservation Service. Hydrographs. Chapter 16. Part 630 Hydrology. National Engineering Handbook. 2007; 50p.
  • Zolghadr M, Rafiee M.R, Esmaeilmanesh F, Fathi A, Tripathi R.P, Rathnayake U, Gunakala S.R, and Azamathulla H.M. Time of concentration based on two-dimensional hydraulic simulation. Water. 2022; 14(3155): 1-20.
  • USDA, Natural Resources Conservation Service. Time of concentration. Chapter 15. Part 630 Hydrology. National Engineering Handbook. 2010; 29p.
  • Chow V.T, Maidment D.R, and Mays L.W. Applied Hydrology. McGraw-Hill Book series in Water Resources and Environmental Engineering. 1988; 572p.
  • USDA, Natural Resources Conservation Service. Flood routing. Chapter 17. Part 630 Hydrology. National Engineering Handbook. 2014; 78p.
  • Arcement G.J, and Schneider V.R. Guide for selecting Manning's roughness coefficients for natural channels and flood plains. United States Geological Survey, Water Supply. 1989; 2339: 38p.
  • Moriasi D.N, Arnold J.G, Van Liew M.W, Bingner R.L, Harmel R.D, and Veith T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers. 2007; 50(3): 885-900.
  • Gupta H.V, Kling H, Yilmaz K.K, and Martinez G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology. 2009; 377: 80-91.
  • Dawson C.W, Abrahart R.J, and See L.M. HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environmental Modelling & Software, 2007; 22: 1034-1052.
  • Rafiei Sardoii E, Rostami N, Khalighi Sigaroudi S, and Taheri S. Calibration of loss estimation methods in HEC-HMS for simulation of surface runoff (Case Study: Amirkabir Dam Watershed, Iran). Advances in Environmental Biology. 2012; 6(1): 343-348.
  • Azhan M, Bahremand A, Sheikh V.B, Bairam Komaki Ch, and Mohammadrezaei M. Simulation of stream flow hydrographs using flexible distributed hydrological modelling (WetSpa-Python). Iran-Water Resources Research. 2022; 17(4): 242-251. [Persian]
  • Salmani H, Sheikh V.B, Salman Mahiny A, Ownegh M, and Fathabadi A. Evaluation of Hydrological Response in Tilabad Watershed of Golestan for Future Periods as Affected by the Predicted Land use Change. Ecohydrology. 2018; 5(2): 399-418. [Persian]