ارزیابی اثرات اقدامات مکانیکی آبخیزداری در کاهش رسوب مخزن سد زاینده‌رود

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار آب و هواشناسی، گروه مهندسی طبیعت، دانشکده منابع طبیعی و محیط‌زیست، دانشگاه ملایر، سازمان منابع طبیعی و آبخیزداری کشور، مرکز بین‌المللی. مدیریت جامع حوزه‌های آبخیز و منابع زیستی در مناطق خشک و نیمه‌خشک تحت نظارت یونسکو (ICIMWB)

2 دانشجوی دکتری مرتعداری دانشگاه منابع طبیعی و کشاورزی گرگان، سازمان منابع طبیعی و آبخیزداری ایران

چکیده

موضوع: برآورد بار رسوبی رودخانه‌‌ها نقش اساسی در شناخت روابط  اکوهیدرولوژی حوزۀ آبخیز و عمر مفید سد‌ها دارد. مجموعه اقدامات سازه‌ای در آبخیزداری با مدیریت شیب بستر و کنارۀ آبراهه‌ها، همواره  ‌تأثیر قابل توجهی بر رسوبات انتقالی به رودخانه‌ها و مخازن سدها دارند.
 هدف: تعیین دقیق‌ترین روش‌‌های برآورد بار معلق و بار بستر و ارزیابی اثرات سازه‌های آبخیزداری در کاهش رسوب ورودی به مخزن سد زاینده‌رود.
روش تحقیق: در این پژوهش، داده‌‌های هیدرولیکی و رسوب‌سنجی 11 ایستگاه‌ حوزۀ سد زاینده‌رود طی یک دورۀ 50  ساله (۱۳۴9 تا ۱۳۹8) برای انتخاب بهترین روش‌‌های برآورد بار معلق و بار بستر، ، بررسی و سهم اثر تجمعی رسوبات ذخیره‌شده توسط اقدامات آبخیزداری که مانع از انتقال این رسوبات به پایین‌دست شده است، به تفکیک استان و سازه‌ها تعیین گردید.
یافته‌‌ها: روش‌‌های منحنی سنجۀ رسوب بدون ضرایب اصلاحی، مقادیر کمتر از میزان واقعی دبی رسوب را برآورد می‌کنند و در بین این روش‌‌ها به‌ترتیب روش منحنی یک‌خطی، دو‌خطی و حد وسط کمترین مقدار رسوب را برآورد نمود‌ه‌اند. ازطرفی، نتایج نشان داد که ضریب اصلاحی FAO در همۀ روش‌‌های منحنی سنجه نسبت به سایر روش‌‌ها دارای بیش‌تخمینی است. اندازه‌گیری و محاسبۀ تله‌اندازی رسوبات نشان می‌دهد که حجم ذخیرۀ رسوب توسط مجموع بند‌های آبخیزداری تقریباً معادل 4 سال انتقال رسوب در دهۀ 1380 و یا 5 سال انتقال رسوب در دهۀ 1390 در حوضۀ سد زاینده‌رود بوده است.
نتیجه‌گیری: حجم ذخیرۀ رسوب توسط مجموع بند‌های آبخیزداری حوضۀ سد زاینده‌رود، نشان‌دهندۀ اهمیت و نقش این سازه‌ها در مدیریت رسوب رودخانه‌ها و  ورودی به مخزن سد دارد.

کلیدواژه‌ها

موضوعات


Ajao, A. (2024). Recent Advancements in Sediment Transport Modelling in Reservoirs.
Allawi, M. F., Sulaiman, S. O., Sayl, K. N., Sherif, M., & El-Shafie, A. (2023). Suspended sediment load prediction modelling based on artificial intelligence methods: The tropical region as a case study. Heliyon Journal, 9(8), e18506.
Anari, R. (2022). Economic and Hydraulic Simulation Models for Evaluation of Sediment Management in a Reservoir (Doctoral dissertation, Brigham Young University).
Atalo, N., Nazarnejad, H., & Miriaghoubzadeh, M.H. (2015). The First National Conference on Tourism, Ecotourism and Sustainable Development, 15 pp.
Azadi, G., Naderi, M., & Afzali Mehr, H. (2021). Prediction of bed sediment transport rate in sandy rivers using Gaussian process regression. 20th Iranian Hydraulics Conference.
Azizi, Sh., ildoromi, A., & Nouri, H. (2019). The impact of cross-sectional changes on flooding and sediment transport capacity of the Abshineh River in Hamedan. Quantitative Geomorphological Research, 8(2), 189-209.
Azizian, A. H., Haghiabi, A. H., Torabi, H., & Maleki, A. (2019). Modeling of erosion and sediment transport in rivers using the Gstars3 model. Iranian Water Researches Journal13(2), 51-60.
Bayat, I., Bandar, D., & Lotfi, S. (2013). Technical note: Calibration of the sediment rating curve method in estimating sediment yield of the Qezel Ozan basin based on Sefidrood dam data. Iranian Journal of Soil and Water Research (Agricultural Sciences), 44(3), 321-327. Retrieved from https://sid.ir/paper/498476/fa
Bahadori, M., Esfahani, M.R., & Tavakoli, M.R. (2007). Estimation of Sediment Transport Coefficient in Rivers. Journal of Applied Sciences, 7(24), 3907-3912.
Basumatary, M. M., Wary, P., Maji, S., & Kumar, B. (2024). Advanced intelligence model for prediction of sediment transport rate and friction factor in alluvial channel. Multiscale and Multidisciplinary Modeling, Experiments and Design7(6), 5915-5931.
Donyadideh, M., & Rostami Ravari, A. (2016). Evaluation of sediment equations in estimating the suspended load of the Dalaki River. Iranian Hydraulics Conference.
Endreny, Th., & Hassett, J. (2005). Robustness of pollutant loading estimators for sample size reduction in a suburban watershed. Intl. J. River Basin Management (IAHR & INBO), 3, 53-66
Fardi, S. (2022). Investigation of suspended load concentration using direct measurement in sandy rivers (Case study: Babol Rood River). National Conference on Urban Planning, Architecture, Civil Engineering, and Environment.
Golmaee, S. H., Zia Tabar Ahmadi, M., & Batny, A. (2015). The study of sediment transport and the changes of river bed using Gstars3 Mathematical model (Case study: GavehRoud River). Journal of Water and Soil Conservation22(1), 191-210.
Guide to calculating suspended sediment load and river bed, publication. (2012). Presidential Vice President for Strategic Planning and Supervision, Technical System Affairs, 590.
Heng, S., & Suetsugi, T. (2014). Development of a regional model for catchment-scale suspended sediment yield estimation in ungauged rivers of the Lower Mekong Basin.Geoderma, 235–236, 334–346. In support of Chapter 3.
Jones, K.R., Berney, Q., Carr, D.P., & Barret, E.C. (1981). Arid zone hydrology for agricultural development. FAO Irrigation and Drainage Paper, 37, 271 p.
Karami, H., DadrasAjirlou, Y., Jun, C., Bateni, S. M., Band, S. S., Mosavi, A., & Chau, K. W. (2022). A novel approach for estimation of sediment load in Dam reservoir with hybrid intelligent algorithms. Frontiers in Environmental Science, 10, 821079.
Kheirfam, H., Kheirfam, B., Azhdan, Y., & Hoseini, S. (2018). Variability of bed load, suspended load, and bed-to-suspended load ratio in the Ghatourchai River. Watershed Engineering and Management, 10(3), 410-420.
Khodashenas, S. R., & Yarahmadi, N. (2009). Comparison of suspended sediment measurement methods in rivers. 8th International River Engineering Seminar, Ahvaz, Iran.
Mohammadi, S., Hassanpour, F., Sharif Azari, S., & Foroughi, F. (2021). Evaluation of modern regression methods for estimating suspended sediment load in the Sistan River. Iranian Journal of Irrigation and Water Engineering, 12(46), Winter.
Moradinejad, A. (2024). Suspended load modeling of river using soft computing techniques. Water Resources Management38(6), 1965-1986.
Müller, O. V., McGuire, P. C., Vidale, P. L., & Hawkins, E. (2024). River flow in the near future: a global perspective in the context of a high-emission climate change scenario. Hydrology and Earth System Sciences, 28(10), 2179-2201.
Najafi, S., Dragovich, D., Heckmann, T., & Sadeghi, S. H. (2021). Sediment connectivity concepts and approaches. Catena, 196, 104880.
National Technical and Executive System. (2007). Guidelines for erosion and sediment studies in river management (Publication No. 383).
Pavanelli, D., & Pagliarani, A. (2002). Monitoring water flow, turbidity and suspended sediment load, from an Apenninecatchment basin, Italy. Biosystems Engineering, 83(4), 463–468.
Ratton, P., Bleninger, T. B., Pereira, R. B., & Gonçalves, F. V. (2022). Bedload sediment transport estimation in sand-bed rivers comparing traditional methods and surrogate technologies. Applied Sciences13(1), 5.
Sadeghi, S. H., Moatamednia, M., & Behzadfar, M. (2011). Spatial and temporal variations in the rainfall erosivity factor in Iran. Journal of agricultural science and technology (JAST), 13(3), 451-464.
Sadeghi, S.H., Moosavi, V., Karami, A., & Behnia, N. (2012). Soil erosion assessment and prioritization of affecting factors at plot scale using the Taguchi method. Journal of Hydrology, 448, 174-180
Sadeghi, S. H., Kheirfam, H., & Darki, B.Z. (2020). Controlling runoff generation and soil loss from field experimental plots through inoculating cyanobacteria. Journal of Hydrology, 585, 124814.
Samadian Fard, S., Ghorbani, M. A., Hoseini Lor, R., Hosseinzadeh Dalir, A., & Farsadizadeh, D. (2007). Selection of the most suitable methods for estimating suspended and bed load in the Ahar Chai River (upstream of Sattarkhan Dam). Agricultural Research, 7(3), 91-101.
Saghbian, S. M. (2021). Estimating suspended sediment load using intelligent hybrid methods considering model uncertainty. Water and Soil (Agricultural Sciences and Industries), 35(4), 475-488.
Schmidt, S., Alewell, C., & Meusburger, K. (2018) Mapping spatio-temporal dynamics of the cover and management factor (C-factor) for grasslands in Switzerland. Remote Sens Environ, 211, 89–104.
Shahiri Tabarestani, E., & Afzalimehr, H. (2020). Estimation of annual erosion and sediment yield in Babolrood watershed using MPSIAC model. Journal of Environmental Science and Engineering, 6(3), 192-205.
Shojaeian, Z., & KHodabakhshi, H. (2017). Calculation of Sediment Entering a Karoon River Using GSTARS 3. Water Engineering5(2), 122-130.
Shmakova, M. (2022). Sediment transport in river flows: New approaches and formulas. In Modeling of Sediment Transport. IntechOpen.
Tajmehr, R., Hasounizadeh, H., & Abdeveis, S. (2014). Assessment of reservoir sedimentation by mathematical model GSTARS3 on Masjed Soleyman dam in Khuzestan Province-Iran. Journal of Water Science & Engineering, 4(10), 7-18.
Yang, C.T., & Simoes, F.J.M. (1998). Application of Gstars to River Sedimentation Studies. 9th ISAS, Civil Engineering Department, Colorado State University, Fort.Collins, 8 pp.
Yang, C.T., & Simoes, F.J.M. (2002). Numerical model for reservoirs sedimentation. Civil Engineering Department, Colorado State University, Fort. Collins, 139, 018-032.
دوره 12، شماره 3
مهر 1404
صفحه 828-847
  • تاریخ دریافت: 22 تیر 1404
  • تاریخ بازنگری: 18 مرداد 1404
  • تاریخ پذیرش: 17 شهریور 1404
  • تاریخ اولین انتشار: 01 آبان 1404
  • تاریخ انتشار: 01 آبان 1404