بررسی تأثیر عملیات آبخیزداری بر توزیع جریان سطحی با استفاده از معرفی الگوریتم توزیع جهت جریان متعدد

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار گروه آبخیزداری دانشکدة منابع طبیعی و کویرشناسی دانشگاه یزد

2 دانشجوی دکتری علوم و مهندسی آبخیزداری دانشکدة منابع طبیعی و کویرشناسی دانشگاه یزد

3 دانشیار دانشکدة منابع طبیعی و محیط زیست دانشگاه فردوسی مشهد

چکیده

روندیابی جریان سطحی در حوضه‌های آبخیز به دو گروه اصلی شامل الگوریتم جهت جریان متعدد و الگوریتم جهت جریان منفرد تقسیم می‌شود. بسیاری از بسته‌های نرم‌افزاری و مطالعات از الگوریتم جهت جریان منفرد به‌دلیل سادگی و حجم کم محاسبات برای روندیابی جریان سطحی در حوضه‌های آبخیز استفاده می‌کنند. در این تحقیق تأثیر عملیات آبخیزداری بر روندیابی جریان سطحی با استفاده از معرفی الگوریتم توزیع جریان متعدد، در حوضۀ زوجی کاخک شهرستان گناباد بررسی شد. افزون‌بر این، نحوة پیاده‌سازی الگوریتم جریان متعدد و محاسبة مقدار تجمعی جریان با استفاده از این الگوریتم در محیط GIS بیان شد. برای این منظور جریان‌های سطحی ایجادشده طی سال‌های 2009 تا 2014 با استفاده از الگوریتم توزیع جریان متعدد برای دو سناریوی تحت عملیات آبخیزداری و فاقد عملیات آبخیزداری شبیه‌سازی شد. نتایج نشان داد روش روندیابی جریان متعدد با نسبت حداکثر 1/97 و حداقل 3/64 درصد، حجم کل جریان خروجی را برای وقایع بررسی‌شده شبیه‌سازی کرد و حجم کل جریان در خروجی حوضه برآورد شد. همچنین نتایج نشان داد که در رگبارهای با مقدار بارش کم که حجم جریان اندک است، اجرای عملیات آبخیزداری به‌طور 100 درصد بر کاهش جریان خروجی از حوضه تأثیر داشته است، اما در جریان‌های با حجم بیشتر بین 2/38 تا 2/74 درصد سبب کاهش حجم جریان خروجی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Study of Watershed Measures Impacts on Surface Runoff Routing by use of Multiple Flow Direction Algorithm

نویسندگان [English]

  • Ali Talebi 1
  • Masoud Eshghizadeh 2
  • Mohammag Taghi Dastorani 3
  • Hamidreza Azimzade 1
چکیده [English]

One of the most important problems in schematization and watershed management is determining the watershed measures impacts on flow distribution. Flow distribution algorithms grouped into two main types include Single Flow Direction (SFD) algorithm and Multiple Flow Direction (MFD) algorithms. In many package of GIS use the Single Flow Direction to runoff routing. In this research studied watershed measures impacts on surface runoff routing by use of Multiple Flow Direction Algorithm in Kakhk Experimental Watershed of Gonabad County. Moreover explain the procedure of running and calculating this algorithm in the Geographical Information Systems (GIS). For this purpose, the runoff surface generated during the years 2009 to 2014 were simulate for the scenario under watershed measures and no measures. Result showed maximum 97.1 percent and minimum 64.3 percent the flow volume of rainfall events by use of the Multiple Flow Direction methods can be simulated and estimated the flow total volume in outlet. In addition, the results showed, in showers that rainfall and flow volume amounts are small, watershed measures reduced 100 percent of the flow total output. But in flow with large volume those reduced between 38.2 to 74.2 percent of the flow total output.

کلیدواژه‌ها [English]

  • Multiple Flow Direction
  • Single Flow Direction
  • Runoff
  1. Baartman  J. E. M., Temme A.J.A. M., Veldkamp T., Jetten V. G., Schoorl G.M., 2013, Exploring the role of rainfall variability and extreme events in long-term landscape development, Catena, 109, pp.25–38.
  2. Baartman J.E.M., Van Gorp W., Temme A.J.A.M., and Schoorl J.M., 2012, Modelling sediment dynamics due to hillslope–river interactions: incorporating fluvial behaviour in landscape evolution model LAPSUS, Earth Surface Processes and Landforms, 37, pp.923-935.
  3. Buis E., and Veldkamp A., 2008, Modelling dynamic water redistribution patterns in arid catchments in the Negev Desert, Earth Surface Processes and Landforms, 33(1), pp.107-122.
  4. Eshghizadeh M., 2012, Plan review of Kakhk paired catchment, Forests, Range & Watershed Management Organization of Iran. (in persian)
  5. Freeman T.G., 1991, Calculating catchment area with divergent flow based on a regular grid, Computers & Geosciences, 17(3), pp.413-422.
  6. Hasan A., Pilesjö P., and Persson A., 2011, Estimating surface flow over digital elevation models using a new improved form-based algorithm, River Basin Management VI, 146, pp.201-211.
  7. Hengle T., and I.Reuter H., 2009, Geomorphometry Concepts, Software, Applications, Developments in Soil Science, Amsterdam, Netherlands.
  8. Holmgren P., 1994, Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation, Hydrological processes, 8, pp.327-334
  9. Jenson S.K., and Domingue J.O. , 1988, Extracting topographic structure from digital elevation data for geographical information system analysis, Photogrammetric Engineering and Remote Sensing, 54(11), pp.593–1600.

 

10. Lesschen J.P., Schoorl J.M., Cammeraat L.H., 2009, Modelling runoff and erosion for a semi-arid catchment using a multi-scale approach based on hydrological connectivity, Geomorphology, 109, pp.174–183.

11. Liu J., Zhu A-X., Liu Y., Zhu T., and Qin Ch-Z., 2014, A layered approach to parallel computing for spatially distributed hydrological modeling, Environmental Modelling & Software, 51, pp.221-227.

12. Noori H., Khoshhal J., Vali A., 2007, The Study of Watershed Measures Impact on Runoff Coefficient in semi-arid region. 10th Soil Science Congress of Iran. Tehran.

13. Pilesjö p., and Hasan A., 2014, A Triangular Form-based Multiple Flow Algorithm to Estimate Overland Flow Distribution and Accumulation on a Digital Elevation Model. Transactions in GIS, 18(1), pp.108-124.

14. Pilesjö P., Zhou Q., and Harrie L., 1998, Estimating flow distribution over Digital Elevation Models using a Form-Based Algorithm, Geographic Information Science, 4, pp.44-51.

15. Pilesjö P., and Zhou Q., 1996, A multiple flow direction algorithm and its use for hydrological modelling, in Geoinformatics’96 Proceedings, April 26-28, West Palm Beach, FL, pp.366-376.

16. Qin C.Z., and Zhan L.J., 2012, Parallelizing flow-accumulation calculations on graphics processing units e from iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm, Comput. Geosciences, 43, pp.7-16.

17. Qin C.Z., Zhu A-X., Pei T., Li B., Zhou C., and Yang L., 2007,  An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm, Geogr. Inf. Sci, pp.443-458.

18. Quinn P., Beven K., Chevallier P., and Planchon O., 1991, The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models, Hydrological Processes, 5, pp.59-79.

19. Schoorl J.M., 2002, Addressing the Multi-scale Lapsus of Landscape, Ph.D, thesis, Wageningen University.

20. Schoorl J.M., Sonneveld M.P.W., and Veldkamp A., 2000, Three-dimensional landscape process modelling: the effect of DEM resolution. Earth Surf.Proc, Landforms, 25, pp.1025-1034.

21. Schoorl  J. M., Veldkamp A., 2001, Linking land use and landscape process modelling: a case study for the Alora region (South Spain), Agric.Ecosyst.Environ, 85, pp.281-292.

22. Soulis K.X., 2013, Development of a simplified grid cells ordering method facilitating GIS-based spatially distributed hydrological modeling, Computers & Geosciences, 54, pp.160–163.

23. Tarboton D.G., 1997,  A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research, 33(2), pp.309–319.

24. Wolock D.M., and McCabe Jr.G.J., 1995, Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL, Water Resources Research, 31(5), pp.1315-1324.