پیش بینی دبی جریان رودخانه با استفاده از داده کاوی و سری زمانی

نوع مقاله : پژوهشی

نویسندگان

1 استادیار، دانشکدۀ کشاورزی، دانشگاه گنبد کاووس

2 دانشجوی کارشناسی ارشد آبخیزداری، دانشگاه آمل

3 مربی، دانشکدۀ علوم، دانشگاه گنبد کاووس

چکیده

شبیه­سازی جریان رودخانه به‌منظور آگاهی از دبی رودخانه در دوره‌های زمانی آینده از مسائل مهم و کاربردی است. با توجه به اهمیت اطلاع از دبی جریان در سال­های آینده، در این مطالعه دبی جریان در سه ایستگاه حاجی‌قوشان، قره‌شور و تمر در حوضۀ آبخیز گرگانرود برای سال­های آبی 90-1381 شبیه­سازی شد. به‌منظور شبیه­سازی از روش آماری سری زمانی در قالب الگوی اتورگرسیون (AR) و داده‌کاوی در قالب ماشین بردار پشتیبان (SVM) به دو صورت ماهانه و هفتگی استفاده شد. نتایج در مقیاس ماهانه نشان داد هر دو روش در ایستگاه تمر، دقت کم و در ایستگاه حاجی‌قوشان، دقت خوبی دارند. در ایستگاه قره‌شور SVM توانست ضریب تعیین سری زمانی ماهانه را به‌مقدار 29/0 افزایش و خطای RMSE را 35 درصد کاهش دهد و شبیه­سازی دقیق‌تری انجام دهد. هر دو روش در ایستگاه­های تمر و قره‌شور دبی هفتگی را با دقت کمی پیش‌بینی کردند. در ایستگاه حاجی‌قوشان ضریب تعیین روش سری زمانی هفتگی 91/0 و SVM برابر 86/0 است. آمارۀ DDR نشان داد در ایستگاه حاجی‌قوشان در مقیاس ماهانه روش SVM نسبت به سری زمانی دارای دقت بیشتری است و در مقیاس هفتگی دقت این دو روش برابر است. نتایج این مطالعه نشان داد که روش SVM در هر دو مقیاس ماهانه و هفتگی دقت بیشتری نسبت به سری زمانی دارد؛ همچنین دقت هر دو روش در مقیاس ماهانه بیشتر از مقیاس هفتگی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Predicting streamflow using data-driven model and time series

نویسندگان [English]

  • Seyed Morteza Seyedian 1
  • Maryam Soleimani 2
  • Mojtaba Kashani 3
1 Faculty of agriculture, University of Gonbad-Kavous, Gonbad-Kavous, Iran
2 Master student in watershed management, Amol University
3 Faculty of sciences, University of Gonbad-Kavous, Gonbad-Kavous, Iran
چکیده [English]

Accurate forecasting of streamflows has been one of the most important issues as it plays a key role in allotment of water resources. River flow simulations to determine the future river flows are important and practical. Given the importance of flow in the coming years, in this research three stations: Haji Qooshan, Ghare Shoor and Tamar in Gorganrood cachment were simulated in 2002-2011. To simulate river flow, time series (Auto Regression) and data driven based on support vector machine (SVM) was used for both monthly and weekly. The results showed that both methods in Tamar have low precision and Haji Qooshan station have good precision in monthly simulation. SVM increase 0.29 coefficient determination and decreases 0.35 RMSE error in Ghare Shoor station and perform more accurate than time series. Both methods simulate weekly discharge in low precision in Tamar and Ghare Shoor. Coefficient determination of time series is 0.91 and SVM is 0.86 in weekly simulation. DDR statistics show that the SVM has greater precision than time series in monthly simulation and equal precision in weekly simulation in Haji Qooshan station. The results of this study show that the SVM method is more accurate than time series in monthly and weekly simulation. The accuracy of both methods is on monthly basis rather than weekly. The accuracy of both methods is greater on monthly rather than weekly.

کلیدواژه‌ها [English]

  • River flow
  • time series
  • Gorganrood
  • Support vector Machine
  • Data Mining
اکانل، باورمن، 1375، پیش‌بینی سری های زمانی: شناسایی، تخمین و پیش‌بینی، ترجمۀ رضا شیوا، مؤسسۀ مطالعات و پژوهش‌های بازرگانی، تهران.
خزایی، مجید؛ میرزایی، محمدرضا، 1392، مقایسۀ کارایی پیش‌بینی دبی ماهانه با استفاده از روش‌های شبکۀ عصبی مصنوعی و سری‌های زمانی. نشریۀ علمی- پژوهشی مهندسی و مدیریت آبخیز، جلد 5، شمارۀ 2، 1392‌: 84-74.
خلیلی، کیوان؛ فاخری‌فرد، احمد؛ حصاری، بهزاد، 1386، آنالیز منحنی‌های شدت- مدت و فراوانی خشکسالی و طرح مخازن برای کشاورزی و شرب، سومین کنگرۀ عمران، 13-11 اردیبهشت، دانشگاه تبریز.
سبزی‌پرور، علی‌اکبر؛ مختار، بهناز؛ صادقی‌فر، مجید؛ سقائی، صبا؛ ارشاد فتح، فرناز؛ نوروز ولاشدی، رضا، 1392، برآورد تبخیر روزانه از تشت با استفاده از مدل‌های موجود سری زمانی. نشریۀ علمی پژوهشی مهندسی و مدیریت آبخیز، جلد 6، شمارۀ 1،1393: 51-42.
صباغیان، رضا؛ شریفی، محمد‌باقر، 1388، استفاده از مدل‌های اتفاقی در شبیه‌سازی جریان رودخانه و پیش‌بینی دبی متوسط سالانۀ رودخانه توسط تحلیل سری‌های زمانی، اولین کنفرانس بین‌المللی مدیریت منابع آب، 27-25 مرداد، دانشگاه صنعتی شاهرود.
موسوی، سعید؛ بنی‌حبیب، محمد؛ بندری، ریحانه،1390، پیش‌بینی جریان روزانۀ ورودی به مخزن سد دز با استفاده از مدل‌های سری زمانی، یازدهمین سمینار سراسری آبیاری و کاهش تبخیر، کرمان، ایران.
نوری، روح‌الله؛ خاکپور، امیر؛ دهقانی مجید؛ فرخ‌نیا، اشکان، 1389، پیش‌بینی ماهانۀ جریان با استفاده از ماشین بردار پشتیبان بر مبنای آنالیز مؤلفۀ اصلی، مجلۀ آب و فاضلاب، دورۀ 22، شمارۀ 77: 123-118.
Behzad, M., Asghari, K. Eazi, M. and Palhang, M. 2009. Generalization performance of support vector machines and neural networks runoff modeling. Expert System with Applications, 36: 7624-7629.
Bray, M., and Han, D. 2004. Identification of support vector machines for runoff modeling. Journal of Hydroinformatics, 6: 265-280.
Chen, S.T., Yu, P.Sh. and Tang, H.Y. 2010. Statistical downscaling of daily Precipition using support vector machines and multivariate analysis. Journal of Hydrology, 385: 13-23.
Choy, K.Y. and Chan, C.W. 2003. Modelling of river discharges and rainfall using radial basis function networks based on support vector regression. International Journal of Svstems Science, 34:763-773.
Ckersik N. 2001. Hydrogeology and groundwater modeling to solve problems. Translate: Manoucher Chitchian, Heidar Ali Kashkooli. Shahid Chamran University Press.
Dibike, Y.B., Velickov, S., Solomatine, D.P. and Abbott, M.B. 2001. Model induction with support vector machines: Introduction and applications. Journal of Computing in Civil Engineering, 15: 208-216.
El-Shafie, Reda Taha, A. and Noureldin, A. 2007. A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam. Water Resour Manage. 21: 533-556.
Hipel, K.W. and McLeod, A.I. 1994. Time series modeling of water resources and environmental systems. Elsvier, Amsterdam.
Hsu, C., Chang, C. and Lin, C. 2003. A practical guide to support vector classification. User manuall.
Jain, A. and Indurthy, S.K. 2003. Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural network. Journal of Hydrologic Engineering, 8: 93-98.
Laux P., Vogl, S., Qiu, W., Knoche, H.R. and Kunstmann, H. 2011. Copula-based statistical refinement of precipitation in RCM simulations over complex terrain Hydrol. Earth System Science, 15: 2401-2419
Liong, S.Y. and Sivapragasam, C. 2002. Flood stage forecasting with support vector machins. Journal of the American Water Resources Association, 38: 173-196.
Mahjoobi, J. and Mosabbeb, A. 2009. Prediction of significant Wave height using regressive support vector machines. Ocean Engineering, 36: 339–347.
Méndezm, C., Manteiga, G., Bandem, F., Sànchez, P. and Caldeŕon, L. 2004. Modelling of the monthly and daily behavior of the runoff of the Xallas River using Box-Jenkins and Neural Networks methods. Journal of Hydrology, 296:38–58.
Mohandes, M.A., Halawani, T.O., Rehman, S.A. and Hssain, A.A. 2004. Support vector machines for Wind speed prediction. Renewable Energy, 29: 939–947.
Nayak, P.C., sudheer, K.P., Rangan, D.M. and Ramasastri, K.S. 2004. A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291: 52-66.
Noori, R., Karbassi, A., Farokhnia, A. and Dehghani. M. 2009. Predicting the longitudinal dispersion coefficient using support vector machine and adaptive neuro-fuzzy inference system techniques. Environmental Engineering Science, 26: 1503-1510.
Noori, R., Karbassi, A.R., Moghaddamnia, A., Han, D., Zokaei-Ashtiani, M.H., Forokhnial, A. and Ghafari- Goushesh, M. 2011. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology, 401: 177–189.
Sakhare, S. and Deo, M.C. 2009. Derivation of wave spectrum using data driven methods. Marine Structures, 30: 1-16.
Shin, S., Kyung, S., Lee, T. and Kim, J.H. 2005. An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28: 127-135.
Thomas, H.A. and Fiering, M.B. 1962. Mathematical synthesis of stream flow sequences for the analysis of river basin by simulation. Harward university press, Cambrige, 751 pp.
Thompstone, R.M., Hipel, K.W. and Mcleod, A.I. 1985. Forecasting quarter-monthly river flow. Water ResourcesBulletin, 21: 731-741.
Tripathi, Sh., Srinivas, V.V. and Nanjundiah, R.S. 2006. Downscaling of precipitation for climate change scenarios: A support vector machine approach. Journal of Hydrology, 330: 62-640.
Tsonis, A.A. 2001.  Probing the linearity and nonlinearity in the transitions of the atmospheric circulation. Nonlinear Proceesses Geophysics. 8: 341-345.
Vapnik, V.N. 1995. The nature of statistical learning theory, Springer-Verlag, New York.
Wang, W., Van Gelder, P.H., Vrijling, J.K. and Ma, J. 2005. Testing and modeling autoregressive conditional heteroskedasticity of streamflow processes. Nonlinear Processes Geophysics, 12: 55-66.
Wang, W.J., Xu, Z.B., Lu, W.Z. and Zhang, X.Y. 2003. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing, 55: 643–663.
Yu, X., Liong, S.Y. and Babovic, V. 2004. EC-SVM approach for realtime hydrologic forecasting. Journal of Hydroinformatics, 6: 209-23.
Yurekli K., Kurung A. and Ozturk F. 2005. Testing the Residuals of an ARIMA Model on the Cekerek Stream Watershed in Turkey. Turkish Journal of Enviromental Science, 29: 61-74.