بررسی آلودگی آب زیرزمینی دشت ملکان به آرسنیک

نوع مقاله : پژوهشی

نویسندگان

1 کارشناس ارشد هیدروژئولوژی، دانشکدۀ علوم طبیعی، گروه علوم زمین، دانشگاه تبریز

2 استادیار هیدروژئولوژی، دانشکدۀ علوم طبیعی، گروه علوم زمین، دانشگاه تبریز

3 استاد هیدروژئولوژی، دانشکدۀ علوم طبیعی، گروه علوم زمین، دانشگاه تبریز

چکیده

از آنجا که در زمینۀ وضعیت پراکنش عناصر سنگین در آب‏های زیرزمینی دشت ملکان اطلاعاتی وجود ندارد، این مطالعه با هدف بررسی فلزات سنگین، به‌خصوص آرسنیک در آب زیرزمینی و تعیین عوامل مهم بر آنومالی آرسنیک این دشت انجام پذیرفت. به همین‌منظور، نمونه‏برداری از منابع آب زیرزمینی انجام شد و آنالیزهای هیدروشیمیایی در آزمایشگاه آب‏شناسی دانشگاه تبریز انجام شد. همچنین برخی عناصر سنگین از قبیل آهن، آلومینیوم، منگنز، آرسنیک و کروم با روش جذب اتمی‌‌ـ کوره گرافیتی در آزمایشگاه کنترل کیفی آب‌ـ فاضلاب تبریز اندازه‏گیری شدند. در مطالعۀ حاضر روش Random Forest (RF) که یک روش یادگیری مبتنی بر دسته‏ای از درخت‏های تصمیم است، برای ارزیابی احتمال آلودگی آرسنیک پیشنهاد شده که تا کنون در این زمینه استفاده نشده است. روش RF نسبت به روش‏های دیگر مزایایی مانند دقت پیش‏بینی زیاد، توانایی در یادگیری روابط غیر‌خطی، توانایی زیاد در تعیین متغیرهای مهم در پیش‏بینی و ماهیت غیر‌پارامتری دارد. بر‌اساس پیش‏بینی مدل RF، مقدار قابلیت انتقال، نیترات، هدایت هیدرولیکی و وجود شهرها به‏عنوان تأثیر‌گذارترین پارامترها در وجود آنومالی آرسنیک شناخته شدند. وجود همبستگی زیاد بین مقادیر نیترات و آرسنیک، به منشأ انسان‏زاد آنومالی آرسنیک، به‌خصوص به‌دلیل نبود شبکۀ فاضلاب ارتباط پیدا می‏کند. همچنین آلودگی قسمت جنوب‏ شرقی آبخوان را می‏توان به منشأ زمین‏زاد ناشی از سولفیدهای آرسنیک درون شکستگی‏های موجود در مارن‏های میوسن ربط داد. بر اساس نقشۀ به‌دست‌آمده از مدل، 13درصد از وسعت منطقۀ مطالعه‌شده در محدودۀ آسیب‏پذیری یا احتمال آلودگی بسیارکم، 53 درصد در محدودۀ آسیب‏پذیری کم، 21 درصد در محدودۀ آسیب‏پذیری متوسط، 5/11 درصد در محدودۀ آسیب‏پذیری زیاد و 5/1 درصد در محدودۀ آسیب‏پذیری بسیارزیاد نسبت آرسنیک قرار می‏گیرد.
 
 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Malikan Plain Groundwater’s Pollution to Arsenic

نویسندگان [English]

  • hossein norouzi 1
  • attaallah nadiri 2
  • asghar asghari moghaddam 3
1 Msc student of Hydrogeology, University of Tabriz, Iran
2 Assistant Professors of Hydrogeology, University of Tabriz, Iran
3 Professors of Hydrogeology, University of Tabriz, Iran
چکیده [English]

 The presence of Heavy metals anomalies in groundwater resource and their effect on human health through both drinking water and agricultural activities is a serious worldwide. Because of with the distribution of these elements in groundwater of Malikan plain, the information does not exist, this study were performed to evaluate heavy metals, especially arsenic in groundwater and to determining the most important factors on the arsenic anomalies of plains. Therefore, 27 samples were collected from groundwater resources in September 2014, and hydrochemical analysis were carried out in hydrogeology laboratory of Tabriz university as well as some heavy metals such as iron, aluminum, manganese, arsenic and chromium were analyzed by Atomic absorption- Graphite furnace method in Water quality control laboratory in East Azerbaijan Province. In this study the random forest (RF) algorithms, as a learning method based on ensemble of decision trees, are used for the first time in this context for evaluating of arsenics vulnerability. The RF technique has advantages over other methods due to having, high prediction accuracy, non-parametric nature, ability to learn nonlinear relationships, and ability to determine the important variables in the prediction. To model induction, five categories of explanatory variables, including aquifer characteristics, heavy metals, driving forces, remote sensing and physical-chemical variables, containing 24 variables, accompany with the response variable (arsenic) were entered into the model. Based on RF model predictions, transmissivity, nitrate, hydraulic conductivity and residential areas, were identified as the most effective parameters for having arsenic anomalies. The presence of high correlation between the amounts of nitrates and arsenic implicates the same origin for these ions. Based on the purposed model, 13% of the plain area is very low 53% low, 21% moderate, 11.5% high and 1.5% very high vulnerable to the arsenic contamination.
 
 
 

کلیدواژه‌ها [English]

  • groundwater
  • arsenic
  • Malikan Plain
  • Nitrate
  • Transitivity
  • Random forest
 
 
1-       Asghari Moghaddam, A; Barzegar, R, 2013, considering Factors affecting high concentrations of arsenic in ground water Resources Tabriz plain aquifers, Journal of Earth Sciences, 92: pp. 154-147, [Persian].
2-       Nadiri, A; Asghari Moghaddam, A; Sadeghi, F; Agaie, H, 2011, investigation of the arsenic anomaly in water resources of Sahand Dam, Journal of Environmental Studies, 3: PP. 61-74, [Persian].
3-       Bellman, R, 2003, Dynamic programming. Mineola, NY: Dover Publications 366 pp.
4-       Ahmed, K.M; Bhattacharya, P; Hasan, M.A., Akhter, S.H; Alam, S.M.M; Bhuyian, M.A.H; Imam, M.B; Khan, A.A; Sracek, O, 2004, Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview, Applied Geochemistry, 19: pp.181–200.
5-       Booker, D.J; Snelder, T. H, 2012, comparing methods for estimating flow duration curves at ungauged sites. Journal of Hydrology, 434: pp. 78–94.
6-       Boisson, J; Ruttens, A; Mench, M, Vangronsveld, J, 1999, Evaluation of hydroxyapatite as a metal immobilizing Soil additive for the remediation of polluted soils, Part 1. Influence of hydroxyapatite on metal exchange ability in soil, plant growth and plant metal accumulation. Environmental Pollution 104: 225–233.
7-       Breiman, L; 1996, bagging predictors, Mach Learn, 24(2): pp. 123–40.
8-       Breiman, L; 2001, Random Forests, Mach Learn, 45(1): pp. 5–32.
9-       Breiman, L; Friedman, J. H; Olshen, R.A, Stone C.J, 1984, Classification and regression trees, Chapman & Hall/CRC, New York.
10-    Cai, X; Yu, Y; Huang, Y; Zhang, L; Jia, P.M, Zhao, Q, 2003, Arsenic trioxide-induced mitotic arrest and apoptosis in acute promyelocytic leukemia cells Leukemia, 17: pp.1333–1337.
11-    Das, P; Samantaray, S; Rout, G.R, 1997, Studies on cadmium toxicity in plants, a review. Environment Pollution, 98: pp.29-36.
12-     Das, A.K; 1990, Metal ion induced toxicity and detoxification by chelation therapy, A text book on medical aspects of bio-inorganic chemistry, Isted, CBS, Delhi, 21: pp. 17-58.
13-     Duda, R.O; Hart, P.E; Stork, D.G, 2011, Pattern classification and introduction to the bootstrap. Vol. 57, pp. CRC press.
14-    Duker, A.A; Carranza E.J; Hale, M, 2005, Arsenic geochemistry and health, Environmental Pollution, 31 (5): pp. 631-64.
15-    Emberger, L; 1952, Sur le quotient pluviothermique, C.R. Sciences, 234: pp. 2508-2511.
16-    Evanko, F.R; Dzombak, D.A, 1997, Remediation of metals-contaminated soils and groundwater. Technology Evaluation Report prepared for Ground Water Remediation Technologies Analysis Center, Journal of Hydrology, 213: pp. 71–87.
17-    Facchinelli, A; Sacchi, E; Mallen, L, 2001, Multivariate statistical and GIS-based approach to identify heavy metal sources in soils, Environment Pollution 114: pp. 313–324.
18-    Friedl, M. A; Brodley, C. E; Strahler, A. H, 1999, Maximizing land cover classification accuracies produced by decision trees at continental to global scales, IEEE Transvers Geoscience Remote Sensing 37(2); pp. 969–77.
19-    Guyon, I; Elisseeff, A, 2003, an introduction to variable and feature selection, Journal of machine Learning, 3: pp. 1157–82.
20-    Jack C.N; Wang J; Shraim, A.A, 2003, Global health problem caused by arsenic from natural sources, Chemosphere, 52 (9): pp. 1353-1359.
21-    Ghassemzadeh, F; Arbab-Zavar, M.H; McLennon, G, 2006, Arsenic and antimony in drinking water in Khohsorkh area, northeast Iran, possible risks for the public health, Journal of Applied Sciences, 6 (13): pp. 2705-2714.
22-    Jain, C.K; Ali, I, 2000, Arsenic Occurrence toxicity and speciation techniques, Water Resource, 34(17): pp. 4304-4312.
23-    Ko, B; Gim, J; Nam, J, 2011, Cell image classification based on ensemble features and random forest, Electronics Letters, 47: pp. 638-648.
24-    Mosaferi, M; Yunesian, M; Mesdaghinia, A.R; Nadim, A; Nasseri; and Mahvi, A.H, 2006, Arsenic occurrence in drinking water of L.R. of Iran- the case of Kurdistan province, In: Fate of Arsenic in the environment, Proceedings of the BUET-UNU international symposium, 5-6 February, Dhaka, Bangladesh, Sciences, 6 (13): pp. 2705-2714.
25-    Pal, M; 2005, Random Forest classifier for remote sensing classification, International Journal of Remote Sensing 26(1): pp. 217–22.
26-    Ramanathan, A.L; Balakrishna, P.M; Chidambaram, S, 2007, Groundwater Arsenic Contamination and its health effect-case studies from India and South East Asia, Indian Journal Geochemistry, 22: pp. 371-384.
27-    Rodriguez, V. F; Ghimire, B; Rogan, J; Chica-Olmo, M; Rigol-Sánchez, J. P, 2012d, An assessment of the effectiveness of a Random Forest classifier for land-cover classification, ISPRS Journal of Photogram Remote Sensing, 67: pp. 94-104.
28-    Smedley, P.L; Kinniburgh, D.G, 2002, A review of the source, behavior and distribution of arsenic in natural waters, Applied Geochemistry, 17(12): pp. 517- 568.
29-    USEPA, 2001, Risk Assessment Guidance for Superfund, Human Health Evaluation. Manual Part A, Interim Final, vol. 1, EPA/540/1-89/002.
30-    WHO (World Health Organization), 2009, Guideline for Drinking Water Quality.
31-    WHO, 2004, Guidelines for drinking water quality, Third edition, World Health Organization, Geneva.bnb.
32-    Zheng, Y; Stute, M; Gavrieli, A.I; Dhar, R; Simpson, H.J; Schlosser, P; Ahmed, K.M, 2004, Redox control of arsenic mobilization in Bangladesh groundwater, Applied Geochemistry 19: pp. 201–214.