تأثیرات حفاظتی تغییر اقلیم براساس ریزمقیاس ‏سازی دمای پیش‏ بینی‌شده در قرن 21 (مطالعۀ موردی: دو ایستگاه ارازکوسه و نوده در استان گلستان)

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد آبخیزداری، گروه مرتع و آبخیزداری، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبدکاووس، ایران

2 استادیار، گروه مرتع و آبخیزداری، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبدکاووس، ایران

چکیده

ارزیابی تأثیرات بالقوۀ تغییرات اقلیم در قرن 21 میلادی بر توزیع گونه‏ها و فرایندهای اکولوژیکی به سناریوهای اقلیمی با تفکیک‏پذیری مکانی کافی نیاز دارد. در پژوهش حاضر عملکرد سناریوهای SRES و RCP در پیش‏بینی دمای کمینه و بیشینۀ ایستگاه‏های ارازکوسه و نوده، واقع در استان گلستان در دوره‏های زمانی 2046‌ـ 2065 و 2080‌ـ 2099 نسبت به دورۀ پایه 1986‌ـ 2005 مقایسه شد. بدین‌منظور از هشت مدل GCM و شش سناریوی انتشار و مدل‏های ریزمقیاس‌نمای LARS-WG و SDSM استفاده شد. نتایج نشان داد در بین سناریوهای انتشار قدیم، A1B و در بین سناریوهای جدید، RCP 8.5 بیشترین افزایش دما را برای هر دو ایستگاه پیش‏بینی کردند. مقدار افزایش دما به‌طور نسبی از سناریوی RCP 2.6 به سمت سناریوی RCP 8.5 افزایش می‏یابد. در هر دو سناریوهای جدید و قدیم، دمای تابستان آینده ممکن است با نرخ بیشتری نسبت به دیگر فصول افزایش یابد. همچنین در این تحقیق گسترده‏تر‌بودن تغییرات دما با مدل‏ MICP5 و سناریوهای RCP نسبت به مدل‏های MICP3 و سناریوهای SRES به‌وضوح مشاهده شد. تفاوت‏ها در پیش‏بینی‏ها توسط سناریوها بیانگر وجود عدم قطعیت است. به‏طور کلی، عدم قطعیت به محدودۀ وسیعی از برآورد تأثیرات تغییر اقلیم منجر می‏شود. بنابراین، با توجه به پیش‏بینی‏های متنوع آیندۀ دما، در صورت انتخاب فقط یک یا تعداد محدودی از مدل‌های گردش عمومی جوّ، برداشتی اشتباه دربارۀ تغییرات اقلیمی ‏آینده ایجاد می‏‌شود.
 
 
 

کلیدواژه‌ها

موضوعات


 
        [1].        IPCC. Climate change 2013. The physical science basis. Summary for policy makers. Contribution of Working Group I to the Intergovernmental Panel on Climate Change. Cambridge University Press. 2013; 18.
        [2].        Foster G, Rahmstorf S. Global temperature evolution 1979-2010. Environmental Research Letters. 2011; 6 (4): 044022.
        [3].        Gillett N P, Arora V K, Flato G M, Scinocca J F, Salzen k. Improved constraints on 21st- century warming derived using 160 years of temperature observations. Geophysical Research Letters. 2012; 39 (1): L01704.
        [4].        Huber M, Knutti R. Anthropagonic and natural warming inferred from changes in earth's energy balance. Nature Geosciences. 2011; 5 (1): 31-36.
        [5].        Wilby R L, Charles S P, Zorita E, Timbal B, Whetton P and Mearns L O. Guidelines for use of climate scenarios developed from statistical downscaling methods. 2004. IPCC Task Group on data and scenario support for Impact and Climate Analysis (TGICA). hhttp://ipcc-ddc.cru.uea.ac. uk/guidelines/dgm_no2_v1_09_2004. Pdfi.
        [6].        IPCC. Climate change 2007. The Fourth Assessment Report (AR4) of the United Nations Intergovernmental Panel science basis of climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2007; 996.
        [7].        Wilby R L, Wigley T M L, Conway D, Jones P D, Hewitson B C, Main J, Wilks D S. Statistical downscaling of general circulation model output: a comparison of methods. Water Resources Research. 1998; 34: 2995_3008.
        [8].        Tabor K, Williams J W. Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecological Applications. 2010; 20 (2): 554–565.
        [9].        Knight F H. Risk, Uncertainty, and Profit. Boston: Houghton Mifflin. 1921.
      [10].      Khan M S, Coulibaly P. Climate change impact study on water resources with uncertainty estimates using Bayesian neural network. McMaster University, PhD Thesis, Canada. 2006.
      [11].      Dibike Y B, Coulibaly P. Temporal neural network for downscaling climate variability and extremes. Neural Networks. 2006; 19 (2): 135-144.
      [12].      Hashemi M Z, Shamseldin A Y. Comparison of SDSM and LARS-WG simulation and downscaling of extreme precipitation events in a watershed. Stoch Environ Res Risk Assess. 2011; 25 (4): 475-484.
      [13].      Samadi S, Catherine A M, Wilson E, Moradkhanim H. Uncertainty analysis of statistical downscaling models using Hadley Centere Coupled Model. Theoretical and Applied Climatology. 2013; 114 (4): 673- 690.
      [14].      Saraf V R, Regulwar D G. Assessment of climate change for precipitation and temperature using ststistical downscaling methods in upper Godavari River Basin, India. Journal of Water Resource and Protection. 2016; 8 (1):31-45.
      [15].      Daneshfaraz R, Razaghpoor H. Assessment of climate on evapotranspiration of West Azerbaijan province. Journal of Geographic Space. 2014; 14 (46): 199-211. (Persian).
      [16].      Abbasnia M, Tavosi T, Khosravi M, Toros H. Uncertainty analysis of future changes in daily maximum temperatures over Iran by GIS. Journal of Geographic information. 2015; 25 (97): 29-43. (Persian).
      [17].      Ahmadvand Kahrizi M, Rouhani H, Heshmatpour A, Seyedian M. Evaluation SDSM downscaling model to predict temperature (Case Study: Arazkuseh stations and nodes). Conference semi-arid hydrology, University of Kurdistan. 2015. (Persian).
      [18].      Jafarzadeh M, Rouhani H, Heshmatpour A, Kashani M. Detecting trend of meteorological series across the Gorganrood Basin in the last three decades. Journal of Watershed Management Research. 2016; 7 (13): 230-240.(Persian).
      [19].      Ashofteh P, Massah Bouani A R. Impact of climate change on maximum discharges, Case study of Aidoghmoush Basin, East Azerbaijan. Soil and Water Sciences. 2010; (14) 53: 25-39. (Persian).
      [20].      Sanikhani H, Dinpajoh Y, Pour Yusef S, Ghavidel S Z, Solati B. The impact of climate change on runoff in watersheds, (Case study: Ajichay watershed in East Azerbaijan province, Iran). Journal of Water and Soil. 2014; 27 (6): 1225-1234. (Persian).
      [21].      Farajzadeh M. Climate change effects on river discharge,Case study Sheshpir River. Journal of Geography and Environmental Planning. 2013; 49 (1): 17-32. (Persian).
      [22].      Taei Semiromi S, Moradi H R, Khodagholi M. Simulation and forecasting of climatic variables by multiple linear model SDSM and General Circulation Models, Case study: Watershed Nishabur. Journal of Humans and the Environment. 2014; 12 (1): 1-15. (Persian).
      [23].      Hamidianpour M, Baaghideh M, Abbasnia M. Assessment of the precipitation and temperature changes over south east Iran using downscaling of general circulation models outputs. Physical Geography Researches. 2016; 48 (1): 107-123. (Persian).
      [24].      Ribalaygua J, Pino M R, Portoles J, Roldan E, Gaitan E, Chinarro D, Torres L. Climate change scenarios for temperature and precipitation in Aragon (Spain). Science of the Total Environment. 2013; 463: 1015-1030.
      [25].      Majhi S, Pattnayak KC, Pattnayak R. Projections of rainfall and surface temperature over Nabarangpur district using multiple CMIP5 models in RCP4.5 and 8.5 scenarios. International Journal of Applied Research. 2016; 2 (3): 399- 405.
      [26].      Wobus C, Flanner M, Sarofim M C, Moura M C P, Smith S J. Future Arctic temperature change resulting from a range of aerosol emissions scenarios. Earth's Future. 2016; 4: 270-281.
      [27].      Nosouhian S, Ghobadinia M, Tabatabaei S H, Khaleghi H. Effect of climate change on temperature and precipitation in Shahrekord and Boroojen plan during 2020-2049. Iran's National Meteorological Conference. 2013. (Persian).
      [28].       Noori M, Sharifi M B, Zarghami M. Effects of climate changes on inflow of reservoirs in the uncertainty condition, Case study: Bostan and Golestan dams in the Gorganroud catchment). Iranian Journal of Irrigation and Drainage. 2015; 9 (2): 367-380. (Persian).
      [29].      Lakzaianpoor GH, Mohammadrezapoor O, Malmir M. Evaluating the effects of climatic changes on runoff of Nazloochaei River in Uremia lake catchment area. Journal of Geography and Development. 2016; 14 (42): 183-198. (Persian).
      [30].      Aung M T, Shrestha S, Weesakul S, Shrestha P K. Multi- model climate change projections for Belu River Basin, Myanmar under Representative Concentration Pathways. Journal of Earth Science & Climatic Change. 2016; 7(1): 1-13.
      [31].      Dousti M, Habibnezhad Roshan M, Shahedi K, Miryaghoubzade M H. Study of climate of Tamar river basin Golestan province in terms of climate change by LARS-WG model. Journal of Earth and Space Physics. 2013; 39 (4): 177-189. (Persian).
      [32].      Basheer A K, Lu H, Omer A, Ali A B, Abdelgader A M S. Impact of climate change under CMIP5 RCP scenarios and the streamflow in the Dinder river and ecosystem habitats in Dinder National Paek, Sudan. Hydrology and Earth System Sciences.2016; 20 (4): 1331-1353.
      [33].      Martinez-Meyer E. Climatechange and biodiversity: some considerations in forecasting shifts inspecies' potential distributions. Biodiversity Informatics. 2005; 26 (2).
      [34].      Pierce ES. Where are all the Mycobacterium avium subspeciesparatuberculosis in patients with Crohn's disease?. PLoS Pathog. 2009Mar 27;5 (3): e1000234.
      [35].      Beaumont NJ, Austen MC, Atkins JP, Burdon D, Degraer S, Dentinho TP, Derous S, Holm P, Horton T, Van Ierland E, Marboe AH. Identification, definition and quantification of goods and services provided by marinebiodiversity: implications for the ecosystem approach. Marine PollutionBulletin. 2007; 54 (3): 253-65.
دوره 3، شماره 4
دی 1395
صفحه 597-609
  • تاریخ دریافت: 01 آبان 1395
  • تاریخ بازنگری: 17 بهمن 1395
  • تاریخ پذیرش: 10 دی 1395
  • تاریخ اولین انتشار: 10 دی 1395
  • تاریخ انتشار: 01 دی 1395