استفاده از داده‌کاوی در پیش‌بینی کیفیت آب‌های سطحی (مطالعۀ موردی: رودخانه‌های دامنۀ شمالی سهند)

نوع مقاله : پژوهشی

نویسندگان

1 استادیار، گروه مهندسی آب، دانشکدۀ کشاورزی، دانشگاه تبریز

2 استادیار، گروه مهندسی آب، دانشکدۀ کشاورزی، دانشگاه شهرکرد

3 کارشناسی ارشد مهندسی عمران، دانشگاه آزاد مراغه

چکیده

پایش و ارزیابی کیفی آب‌های سطحی فرایندی بسیار پرهزینه و زمان‌بر است. بنابراین، انتخاب روشی که در آن با کمترین پارامترهای هیدروشیمیایی بتوان پیش‌بینی نسبتاً دقیقی از طبقۀ کیفیت آب داشت، مهم و ضروری است. تصمیم‌گیری درختی به‌عنوان یکی از روش‌های داده‌کاوی با بهره‌گیری از یک ساختار درختی به طبقه‌بندی داده‌ها می‌پردازد. در این مقاله، با استفاده از روش تصمیم‌گیری درختی کیفیت آب برخی از رودخانه‌های واقع در دامنه‌های شمالی کوه سهند در محل ایستگاه‌های هیدرومتری بستان‌آباد، پل سنیخ، لیقوان و ونیار بررسی شد و برای هر یک از رودخانه‏ها طبقۀ کیفیت آب با استفاده از قوانین اگر‌ـ آن‌گاه توسعه داده شد. برای هر یک از رودخانه‏ها دبی و 12 پارامتر هیدروشیمیایی شامل یون‏های کلسیم (Ca2+)، منیزیم (Mg2+)، کلر (Cl-)، بی‌کربنات (HCo3-)، درصد سدیم (Na%)، اسیدیته (pH)، سولفات (SO42-)، مجموع آنیون‏ها (Sum A)، مجموع کاتیون‏ها (Sum C)، کل نمک‏های محلول (TDS)، نسبت جذب سدیم (SAR) و هدایت الکتریکی (EC) برای ایجاد مدل درختی بررسی شد. نتایج نشان داد مدل تصمیم‌گیری درختی بیشتر با استفاده از چهار پارامتر EC، pH، SAR و Na+ قادر است طبقۀ کیفیت آب را با دقت بسیار زیادی مشخص کند، به‌طوری که میزان خطای مدل توسعه داده‌شده در بخش آزمون برای ایستگاه‏های بستان‌آباد، ونیار، پل سنیخ و لیقوان به‌ترتیب برابر 4/3، 1/8، 9/22 و 6/1 درصد بود.
 
 

کلیدواژه‌ها

موضوعات


منابع
[1]. U.S. Salinity Laboratory Staff, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agric. Handbook; 1954. No.60, 160 p.
[2]. Mirabbasi R, Mazloumzadeh SM, Rahnama MB. Evaluation of irrigation water quality using fuzzy logic, Research Journal of Environmental Sciences, 2008; 2(5): 340-352.
[3]. Santos MF, Cortez P, Quintela H, Neves J, Vicente H & Arteiro J. Ecological Mining - A Case Study on Dam Water Quality. In A. Zanasi, C. Brebbia and N. Ebecken (Eds.), Data Mining VI - Data Mining, Text Mining and their Business Applications, WIT Transactions of Information and Communication Technologies 35, 523-531, WIT Press, ISBN:1-84564-017-9, ISSN:1746-4463; 2005.
[4]. Yahya SM, Rahman AU, Abbasi HN. Assessment of seasonal and polluting effects on the quality of river water by using regression analysis: A case study of River Indus in province of Sindh, Pakistan. International Journal of Environmental Protection. 2012; 2(2): 10-16.
[5]. Rahmani AR, Samadi MT, Heydari M. Water quality assessment of Hamadan-Bahar Plain rivers using Wilcox diagram fir irrigation, Journal of Agricultural Research, 2007; 8(1b): 27-35. [Persian]
[6]. Goljan F, Karbasi AR, Hajizadeh Zaler N, Nabi Bidhendi GR. Water quality of Nour City rivers, Journal of Water Sciences Research, 2009; 1(1): 35-48. [Persian]
[7]. Olyaie E, Banejad H, Samadi MT, Rahmani AR, Saghi MH, Performance Evaluation of Artificial Neural Networks for Predicting Rivers Water Quality Indices (BOD and DO) in Hamadan Morad Beik River, Water and Soil Science, 2010; 20(3): 199-210. [Persian]
[8]. Hajian Nejad M, Rahsepar AR, Measurement and Simulation of Dissolved Oxygen in Zayande Rood River, Journal of Health System Research, 2010; 6(2): 821-828. [Persian]
[9]. Salajegheh A, Razavizadeh S, Khorasani N, Hamidifar M, Salajegheh S, Land use Changes and its Effects on Water Quality (Case study: Karkheh Watershed), 2011; 58:81-86. [Persian]
[10]. Saghebian SM, Sattari MT, Mirabbasi R, Pal M. Ground water quality classification by decision tree method in Ardebil region, Iran. Arabian Journal of Geosciences. 2013; 7(11): 4767-4777.
[11]. Hasani Z, Mirabbasi Najafabadi R, Ghasemi AR. Prediction of groundwater quality in Khanmirza plain using decision tree method, Hydrogeology. 2016; 1(3): 15-30. [Persian]
[12]. Norouzi H, Nadiri A, Asghari Moghaddam A. Investigation of Malikan Plain Groundwater’s Pollution to Arsenic, Ecohydrology. 2016; 3(2): 151-166. [Persian]
[13]. Witten IH, Frank E. Data Mining: Practical Machine Learning Tools and Techniques, second edition, Elsevier: San Francisco. ISBN 0-12-088407-0; 2005.
[14]. Quinlan JR. C4.5 Programs for machine learning, Morgan, Kaufmann, 1993; San Mateo, California
[15]. Quinlan JR. Data mining tools See5 and C5.0 [cited Feb 2012]. Available from http://www.rulequest.com/see5-info.html. 2000.
 
دوره 4، شماره 2
تیر 1396
صفحه 407-419
  • تاریخ دریافت: 05 دی 1395
  • تاریخ بازنگری: 22 اسفند 1395
  • تاریخ پذیرش: 25 اسفند 1395
  • تاریخ اولین انتشار: 01 تیر 1396
  • تاریخ انتشار: 01 تیر 1396