Saeedi Farzad B. Intelligent simulation of rainfall-runoff using a semi-distributed model with time variables. Ph.D. thesis in civil engineering, Faculty of Engineering, University of Tabriz, Tabriz. 2014. [Persian]
Whigham PA, Crapper PF. Modeling rainfall–runoff using genetic programming. Mathematical and Computer Modeling. 2001;33:707–721.
Liong SY, Gautam TR, Khu ST, Babovic V, Keijzer M , Muttil N. Genetic programming: A new paradigm in rainfall runoff modeling. J Am Water Res Assoc. 2001;38:705-718.
Jayawardena AW, Muttil N, Fernando TM. Rainfall-Runoff Modeling Using Genetic Programming. International Congress on Modeling and Simulation Society of Australia and New Zealand. 2005: 1841-1847.
Aytek A, Alp M. An application of artificial intelligence for rainfall-runoff modeling. Journal of Earth System Science. 2008;117(2):145-155.
Nourani V, Baghanam AH, Adamowski J, Gebremichael M. Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling. Journal of Hydrology. 2013;476:228-243.
Nayak PC, Venkatesh B, Krishna B, Sharad KJ. Rainfall-runoff modeling using conceptual, data driven, and wavelet based computing approach. Journal of Hydrology. 2013;493:57-67.
Badrzadeh H, Sarukkalige R, Jayawardena AW. Hourly runoff forecasting for flood risk management: Application of various computational intelligence models. Journal of Hydrolog. 2015;529:1633-1643.
Nourani V. An Emotional ANN (EANN) approach to modeling rainfall-runoff process. Journal of Hydrology. 2016;544:267-277.
Behzad M, Asghari K, Eazi M, Palhang M. Generalization performance of support vector machines and neural networks in runoff modeling. Expert Systems with applications. 2009;36(4):7624-7629.
Botsis D, Latinopoulos P, Diamantaras K. Rainfall-Runoff Moeling Using Suport Vector Regression and Artificial Neural Networks. 12th International Conference on Environmental Science and Technology (CEST2011), Rhodes, Greece, 8-10 September. 2011
Adamowski J. Using support vector regression to predict direct runoff, base flow and total flow in a mountainous watershed whit limited data in Uttaranchal, India. Journal of Land Reclamation. 2013;45(1):71-83.
Ghorbani M. A., and Dehghani R. Application of Bayesian Neural Networks, Support Vector Machines and Gene Expression Programming Analysis of Rainfall - Runoff Monthly (Case Study: Kakarza River). Irrigation Science and Engineering. 2016;39(2):125-138. [Persian]
Nazeri Tahroodi M, Hashemi R, Ahmadi F, Nazeri Tahroodi Z. Accuracy investigation of ANFIS, SVM and GP models in modelling of river discharge values. Journal of Echo Hydrology. 2016;3(3):361-347. [Persian]
Vapnic VN. Statistical Learning Theory. Wiley, NEW YORK, USA. 1998
Suykens JA, De Brabanter J, Lukas L, Vandewalle J. 2002. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing. 2002;48(1):85-105.
Ghafari G, Vafakhah M. Simulation of rainfall-runoff process using artificial neural network and adaptive neuro-fuzzy interface system (Case study: Hajighoshan watershed). Journal of Watershed Management Research. 2013;4(8):120-136. [Persian]
Dehghani A, Zanganeh MA, Mosaedi A, Kouhestani N. Comparison of suspended load estimation using sediment rating curve and artificial neural networks. Journal of Researches on Water and Soil Conservation. 2009;16(1):30-41. [Persian]
Nourani V, Hosseini Baghanam A, Adamowski J, Kisi, O. Applications of hybrid wavelet–Artificial Intelligence models in hydrology. A review. Journal of Hydrology. 2014;514(1):358-377.
Marofi S, Amir Moradi K, Parsafar N. River flow prediction using Artificial Neural Network and Wavelet Neural Network models (Case study: Barandozchay River). Journal of Water and Soil Science. 2013;23(3):93-103. [Persian]
Ferreira C. Gene Expression Programming: a New Adaptive Algorithm for Solving Problems. Complex Systems. 2001;13(2):87–129.
Ferreira C. Automatically defined functions in gene expression programming. In Genetic Systems Programming. Springer Berlin Heidelberg. 2006:21-56.
Yu P. S., Chen S. T., and Chang I. F. Support vector regression for real-time flood stage forecasting. Journal of Hydrology. 2006;328(3):704-716