ارزیابی و مقایسۀ روش‏های نسبت فراوانی، شاخص آماری و آنتروپی برای تهیۀ نقشۀ پتانسیل آب زیرزمینی با استفاده از سیستم اطلاعات جغرافیایی (مطالعۀ موردی: شهرستان جهرم)

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد GIS، دانشکدۀ مهندسی ژئودزی و ژئوماتیک، دانشگاه صنعتی خواجه‏ نصیرالدین طوسی

2 دانشیار گروه سیستم اطلاعات مکانی، دانشکدۀ مهندسی ژئودزی و ژئوماتیک، دانشگاه صنعتی خواجه ‏نصیرالدین طوسی

چکیده

آب زیرزمینی به‏عنوان یکی از منابع ارزشمند‌ تازۀ آب در نظر گرفته می‏شود. با افزایش سریع جمعیت انسان، تقاضا برای آب‏های زیرزمینی افزایش‏ یافته است. تهیۀ نقشۀ مناطق بالقوۀ آب زیرزمینی می‏تواند کمک شایان توجهی به تعیین، محافظت و مدیریت چشمه‏های آب زیرزمینی کند. هدف از این تحقیق، تهیۀ نقشۀ پتانسیل چشمه‏های آب زیرزمینی در شهرستان جهرم با استفاده از روش‏های نسبت فراوانی، شاخص آماری و آنتروپی است. نوآوری تحقیق حاضر، به‏کارگیری روش شاخص آماری برای اولین‌بار به‌منظور تهیۀ نقشۀ پتانسیل آب زیرزمینی و مقایسۀ آن با دو روش آنتروپی و نسبت فراوانی است. دوازده معیار هیدرولوژی، زمین‏شناسی و جغرافیای طبیعی که بر موقعیت چشمه‏ها اثر می‏گذارند، در نظر گرفته شد و در محیط ArcGIS این داده‏ها پردازش و آماده شد. این معیارها شامل درجۀ شیب، جهت شیب، ارتفاع، شاخص توپوگرافی رطوبت (TWI)، طول شیب، شاخص توان آبراهه (SPI)، فاصله از رودخانه، فاصله از گسل، فاصله از جاده، تراکم گسل، کاربری اراضی و زمین‏شناسی است. پس از تهیۀ نقشۀ پتانسیل آب‏های زیرزمینی با این سه روش، برای ارزیابی نتایج از منحنی تشخیص عملکرد نسبی (ROC) استفاده شد. از 103 چشمه معرفی‏شده در این تحقیق، 73 چشمه (70 درصد) برای تهیۀ نقشۀ پتانسیل آب زیرزمینی و 30 چشمه (30 درصد) برای ارزیابی مدل استفاده شد. سطح زیر‌منحنی (AUC) به‏دست‏آمده از منحنی تشخیص عملکرد نسبی، نشان‏دهندۀ دقت 91 درصد برای مدل شاخص آماری، دقت 92 درصد برای مدل نسبت فراوانی و دقت 7/92 برای مدل آنتروپی برآورد شد. نتایج این ارزیابی نشان‏دهندۀ دقت عالی برای این سه مدل و برتری مدل آنتروپی نسبت به دو مدل دیگر است. همچنین بر اساس مدل آنتروپی لایه‏های شاخص توان آبراهه، ارتفاع، شیب و کاربری اراضی بیشترین تأثیر را بر پتانسیل آب زیرزمینی در منطقۀ مطالعه‌شده داشته‏اند.
 
 

کلیدواژه‌ها

موضوعات


منابع
Todd DK, Mays LW. Groundwater hydrology. 1980.
]1[
Arkoprovo B, Adarsa J, Prakash SS. Delineation of groundwater potential zones using satellite remote sensing and geographic information system techniques: a case study from Ganjam district, Orissa, India. Research Journal of Recent Sciences. 2012; 2277:2502.
]2[
Shahid S, Nath S, Roy J. Groundwater potential modelling in a soft rock area using a GIS. International Journal of Remote Sensing. 2000; 21(9):1919-24.
]3[
Greenbaum D. Structural influences on the occurrence of groundwater in SE Zimbabwe. Geological Society, London, Special Publications. 1992; 66(1):77-85.
]4[
Oh H-J, Kim Y-S, Choi J-K, Park E, Lee S. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. Journal of Hydrology. 2011; 399(3):158-72.
]5[
Mukherjee S. Targeting saline aquifer by remote sensing and geophysical methods in a part of Hamirpur-Kanpur, India. Hydrogeol J. 1996; 19:53-64.
]6[
Ganapuram S, Kumar GV, Krishna IM, Kahya E, Demirel MC. Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Advances in Engineering Software. 2009; 40(7):506-18.
]7[
Pradhan B. Groundwater potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques. Open Geosciences. 2009;1(1):120-9.
]8[
Prasad R, Mondal N, Banerjee P, Nandakumar M, Singh V. Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental geology. 2008; 55(3):467-75.
]9[
Tweed SO, Leblanc M, Webb JA, Lubczynski MW. Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia. Hydrogeology Journal. 2007; 15(1):75-96.
]10[
Nobre R, Rotunno Filho O, Mansur W, Nobre M, Cosenza C. Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. Journal of Contaminant Hydrology. 2007; 94(3):277-92.
]11[
Jha MK, Chowdhury A, Chowdary V, Peiffer S. Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resources Management. 2007; 21(2):427-67.
]12[
Ghayoumian J, Saravi MM, Feiznia S, Nouri B, Malekian A. Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. Journal of Asian Earth Sciences. 2007; 30(2):364-74.
]13[
Masetti M, Poli S, Sterlacchini S. The use of the weights-of-evidence modeling technique to estimate the vulnerability of groundwater to nitrate contamination. Natural Resources Research. 2007; 16(2):109-19.
]14[
Arthur JD, Wood HAR, Baker AE, Cichon JR, Raines GL. Development and implementation of a Bayesian-based aquifer vulnerability assessment in Florida. Natural Resources Research. 2007; 16(2):93-107.
]15[
Zhang Z, Cheng Q, editors. GIS Spatial statistical analysis of groundwater in GTA, Canada. Geoscience and Remote Sensing Symposium, 2002 IGARSS'02 2002 IEEE International; 2002: IEEE.
]16[
Chenini I, Mammou AB, El May M. Groundwater recharge zone mapping using GIS-based multi-criteria analysis: a case study in Central Tunisia (Maknassy Basin). Water Resources Management. 2010;24(5):921-39.
]17[
Moghaddam DD, Rezaei M, Pourghasemi H, Pourtaghie Z, Pradhan B. Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arabian Journal of Geosciences. 2015;8(2):913-29.
]18[
Manap MA, Nampak H, Pradhan B, Lee S, Sulaiman WNA, Ramli MF. Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arabian Journal of Geosciences. 2014;7(2):711-24.
]19[
Ozdemir A. GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. Journal of hydrology. 2011;411(3):290-308.
]20[
Pourtaghi ZS, Pourghasemi HR. GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeology Journal. 2014;22(3):643-62.
]21[
Naghibi SA, Pourghasemi HR, Pourtaghi ZS, Rezaei A. Groundwater spring potential mapping using Shannon’s entropy and Random Forest models in the Bojnord watershed, Iran. Earth Science Informatics. 2015;8(1):171-86.
]22[
Zabihi M, Pourghasemi HR, Behzadfar M. Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. ecohydrology Journal. 2015: 2(2):221-232. (Persian).
]23[
Moore I, Burch G. Sediment transport capacity of sheet and rill flow: application of unit stream power theory. Water Resources Research. 1986;22(8):1350-60.
]24[
Van Westen C. Statistical landslide hazard analysis. ILWIS. 1997;2:73-84.
]25[
Rautela P, Lakhera RC. Landslide risk analysis between Giri and Tons rivers in Himachal Himalaya (India). International Journal of Applied Earth Observation and Geoinformation. 2000;2(3):153-60.
]26[
Shannon CE. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review. 2001;5(1):3-55.
]27[
Pourghasemi HR, Mohammady M, Pradhan B. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena. 2012; 97:71-84.
]28[
Bednarik M, Magulová B, Matys M, Marschalko M. Landslide susceptibility assessment of the Kraľovany–Liptovský Mikuláš railway case study. Physics and Chemistry of the Earth, Parts A/B/C. 2010; 35(3):162-71.
]29[
Constantin M, Bednarik M, Jurchescu MC, Vlaicu M. Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environmental earth sciences. 2011;63(2):397-406.
]30[
Komac M. A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology. 2006;74(1):17-28.
]31[
Constantin M, Bednarik M, Jurchescu MC, Vlaicu M. Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environmental earth sciences. 2011;63(2):397-406.
]32[
Zhu C, Wang X, editors. Landslide susceptibility mapping: a comparison of information and weights-of-evidence methods in Three Gorges Area. Environmental Science and Information Application Technology, 2009 ESIAT 2009 International Conference on; 2009: IEEE.
]33[
دوره 4، شماره 3
مهر 1396
صفحه 725-736
  • تاریخ دریافت: 23 دی 1395
  • تاریخ بازنگری: 10 اردیبهشت 1396
  • تاریخ پذیرش: 30 فروردین 1396
  • تاریخ اولین انتشار: 01 مهر 1396
  • تاریخ انتشار: 01 مهر 1396