صحت‌سنجی روش‌های تحلیل سلسله‌مراتبی (AHP) و رگرسیون چند متغیره (MR) در پهنه‌بندی زمین لغزش (مطالعه موردی: حوزه آبخیر ولی‌عصر استان اردبیل)

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی‏ ارشد گروه مهندسی آبخیزداری، دانشکدۀ منابع طبیعی، دانشگاه تربیت ‏مدرس، نور

2 استادیار گروه مهندسی آبخیزداری، دانشکدۀ منابع طبیعی، دانشگاه تربیت ‏مدرس، نور

3 دکتری تکتونیک‌ـ زمین‌شناسی، کارشناس زمین‏ شناسی شرکت طه (قرارگاه خاتم‌الانبیاء)

چکیده

ارائۀ راه‏کارهای مفید برای پیشگیری و کاهش خسار‌ت‌های ناشی از زمین‌لغزش امری اجتناب‏ناپذیر است. از جملۀ این راه‏کارها، پیش‏بینی و پهنه‏بندی مناطق مستعد وقوع این حرکات است. بر همین اساس پژوهش حاضر به مقایسه و ارزیابی صحت دو روش تحلیل سلسله‌مراتبی (AHP) و رگرسیون چند‌متغیره (MR) در پهنه‏بندی خطر زمین‌لغزش در حوضۀ آبخیز ولی‏عصر با مساحت 198 کیلومتر‌مربع واقع در استان اردبیل پرداخت. شش عامل جهت جغرافیایی، شیب، ارتفاع، سنگ‏شناسی، کاربری اراضی و فاصله از رودخانه به‏عنوان مهم‏ترین عوامل مؤثر در وقوع زمین‌لغزش‏های منطقه شناخته شدند. در گام بعدی نقشه‏های پهنه‏بندی خطر زمین‌لغزش با هر دو روش AHP و MR در پنج طبقه تهیه شد. در نهایت، به‏منظور صحت‏سنجی دو روش استفاده‌شده، نقشه‏های تهیه‌شده با شاخص‏های نسبت تراکم (Dr) و شاخص مجموع کیفیت (Qs) مقایسه و ارزیابی شدند. نتایج نشان داد عوامل فاصله از رودخانه، جهت، شیب، کاربری اراضی، سنگ‏شناسی و ارتفاع به‌ترتیب با مقادیر 426/0، 173/0، 145/0، 134/0، 089/0 و 033/0 در روش تحلیل سلسله‌مراتبی و 531/0، 109/0، 344/0، 273/0، 123/0 و 061/0 در روش رگرسیون چند‌متغیره وزن‏دهی شدند. مقدار شاخص‏ نسبت تراکم و شاخص مجموع کیفیت به‏ترتیب، 51/5 و 44/0 برای روش‏ تحلیل سلسله‌مراتبی و 45/6 و 72/0 برای روش رگرسیون چند‌متغیره برآورد شد که نشان داد روش رگرسیون چند‌متغیره با میزان 28 درصد مغایرت با واقعیت صحت بیشتری نسبت به روش تحلیل سلسله‌مراتبی با 56 درصد مغایرت با واقعیت برای پهنه‏بندی خطر زمین‌لغزش در منطقۀ مطالعه‌شده دارد.
 
 
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Verification methods of Analytical Hierarchy Process (AHP) and Multivariate Regression (MR) in landslide zoning (Case Study: Valiasr Watershed in Ardabil Province)

نویسندگان [English]

  • Mohammad Hossein Ghavimipanah 1
  • Abdulvahed Khaledi Darvishan 2
  • Mohammad Reza Ghavimipanah 3
1 MSc. Student, Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
2 Assistant Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
3 PhD in Tectonic-Geology, Geology Expert in TaHa Consulting Engineers
چکیده [English]

Providing effective solutions to prevent and reduce the damage caused by landslides is inevitable. Predicting and zoning landslides are among these solutions. Accordingly, the present study was conducted to compare and assess the accuracy of Analytical Hierarchy Process (AHP) and Multivariate Regression (MR) methods in landslide hazard zoning in Valiasr Watershed with an area of 198 km-2 located in western Ardebil Province. Six factors including aspect, slope, elevation, lithology, land use and distance from the river were known as the most effective factors in landslide occurrence in the study area. Landslide zones were then obtained in five classes using two AHP and MR methods. Finally, landslide zoning maps were compared and evaluated by Density ratio index (Dr) and Quality sum index (Qs) to assess the accuracy of two studied methods. The results showed that distance from river, slope, land use, lithology and height were weighting in 0.426, 0.173, 0.145, 0.134, 0.089, and 0.033 in the AHP methods and 0.531, 0.109, 0.344, 0.273, 0.123 and 0.061 in the MR method, respectively. The amount of two Dr and Qs indices were calculated to be 5.51 and 0.44 respectively in the AHP method and 6.45 and 0.72 respectively in MR method which indicated that MR method having 28% disagreement with reality was more accurate than AHP method having 56% disagreement with reality for landslide hazard in the study area.

کلیدواژه‌ها [English]

  • Density ratio index
  • geographic information systems (GIS)
  • mass movements
  • quality sum index
  1.  

    1. Petschko H, Brenning A, Bell R, Goetz J, Glade T. Assessing the quality of landslide susceptibility maps–case study Lower Austria. Nat. Hazards Earth Syst. Sci. 2014; 14(1): 95-118.‏
    2. Oehorst BANO, Kjekstad D, Patel Z, Lubkowski JG, Knoeff G, Akkerman J. Determination of Socio-Economic Impact of Natural Disasters, Assessing socio-economic Impact in Europe, 2005; 173 p.
    3. Agricultural Jihad Ministry. Landslide Study Group, Watershed, Ranges and Forests Organization. Report of Nation Landslide Database. 2004.
    4. Gaprindashvili G, Van Westen CJ. Generation of a national landslide hazard and risk map for the country of Georgia. Nat. Hazards. 2016; 80(1): 69-101.‏
    5. Pradhan B. An assessment of the use of an advanced neural network model with five different training strategies for the preparation of landslide susceptibility maps. J. Data Sci. 2011; 9(1): 65-81.‏
    6. Pourghasemi HR, Moradi HR, Aghda SF, Gokceoglu C, Pradhan B. GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arabian J. Geosciences. 2014; 7(5): 1857-1878.‏
    7. Shahabi H, Khezri S, Ahmad BB, Hashim M. Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena. 2014; 115: 55-70.‏
    8. Sangchini EK, Emami SN, Tahmasebipour N, Pourghasemi HR, Naghibi SA, Arami SA, Pradhan B. Assessment and comparison of combined bivariate and AHP models with logistic regression for landslide susceptibility mapping in the Chaharmahal-e-Bakhtiari Province, Iran. Arabian J. Geosciences. 2016; 9(3): 1-15.‏
    9. Das I, Sahoo S, Van Westen C, Stein A, Hack R. Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology. 2010; 114(4): 627-637.‏
    10. Hyun-Joo O, Saro L. Cross-validation of logistic regression model for landslide susceptibility mapping at Ganeoung areas, Korea. Disaster Advances. 2010; 3(2): 44-55.‏
    11. Bai S, Lü G, Wang J, Zhou P, Ding L. GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environ. Earth Sci. 2011; 62(1): 139-149.‏
    12. Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena. 2011; 85(3): 274-287.‏
    13. Vasudevan N, Ramanathan K. Geological factors contributing to landslides: case studies of a few landslides in different regions of India. Earth Environ. Sci. 2016; 30(1): 012011.
    14. Chang ZF, Chen XL, An XW, Cui JW. Contributing factors to the failure of an unusually large landslide triggered by the 2014 Ludian, Yunnan, China, Ms= 6.5 earthquake. Nat. Hazards Earth Syst. Sci. 2016; 16: 497-507.‏
    15. Mia MT, Sultana N, Paul A. Studies on the Causes, Impacts and Mitigation Strategies of Landslide in Chittagong city, Bangladesh. J. Environ. Sci. Nat. Resour. 2016; 8(2): 1-5.‏
    16. Pourghasemi HR, Moradi HR, Aghda SF. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat. Hazards. 2013; 69(1): 749-779.‏
    17. Motavali SA, Hosseinzade MM, Esmaeili R, Derafshi Kh. Landslide risk zoning assessment using Multivariate Regression (MR), logistic regression (LR), Analytical Hierarchy Process (AHP) and Fuzzy Logic (FL) (Case Study: Taleghan Watershed). Quantitative Geomorph. Res. 2014; 4(1): 1-20. (Persian)
    18. Shiran k, Hajihashemijazi MR, Niknezhad SA, Rakhsha S. Landslide Risk Zoning Potential by Analytical Hierarchy Process (AHP) and Multivariate Regression (MR) (Case Study: Upstream of North Karoon Basin). Journal of Range and Watershed Management, Iranian J. Nat. Res. 2012; 65(3): 395-409.‏ (Persian).
    19. Alkhasawneh MS, Ngah UK, Tay LT, Isa NAM. Determination of importance for comprehensive topographic factors on landslide hazard mapping using artificial neural network. Environ. Earth Sci. 2014; 72(3): 787-799.‏
    20. Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR. Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arabian J. Geosciences. 2013; 6(7): 2351-2365.‏
    21. Yalcin A. GIS-based Landslide Susceptibility Mapping Using Analytical Hierarchy Process and Bivariate Statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena. 2008; 72: 1-12.
    22. Sharir K, Simon N, Roslee R. Regional assessment on the influence of land use related factor on landslide occurrences in Kundasang, Sabah. In: Proceedings of the Universiti Kebangsaan Malaysia. Sci. Technol. 2016; 1784(1): 0600151-5.‏
    23. Giuseppe F, Simoni S, Godt JW, Lu N, Rigon R. Geomorphological control on variably saturated hillslope hydrology and slope instability. Water Resources Res.‏ 2016; 52(6): 4590-4607.
    24. Alkhasawneh MS, Ngah UK, Tay LT, Mat Isa NA, Al-batah MS. Determination of important topographic factors for landslide mapping analysis using MLP network. Scientific World J. 2013.‏ 1-12.
    25. Park S, Choi C, Kim B, Kim J. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ. Earth Sci. 2013; 68(5): 1443-1464.‏
    26. Regmi AD, Yoshida K, Pourghasemi HR, DhitaL MR, Pradhan B. Landslide susceptibility mapping along Bhalubang—Shiwapur area of mid-Western Nepal using frequency ratio and conditional probability models. J. Mountain Sci. 2014; 11(5): 1266-1285.‏
    27. Kayastha P, Dhital MR, De Smedt F. Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Comp. Geosciences. 2013; 52: 398-408.‏
    28. Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Althuwaynee OF. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat. Hazards. 2013; 65(1): 135-165.‏
    29. Gee MD. Classification of landslides hazard Zonation methods and a test of predictive capability. Bell, Davi, H (Eds.), Proceedings 6th International Symposium on Landslide. 1992; 48-56.